z变换与拉普拉斯变换的关系


通过学习z变换和拉普拉斯变换的关系,可以加深对z变换的理解,为进一步学习掌握数字信号处理的技术与方法奠定理论基础。

1. 离散序列 x ( n ) x(n) x(n)与连续信号 x a ( t ) x_a(t) xa(t)的关系

z变换是对离散信号x(n)进行的,拉普拉斯变换时对连续信号xa(t)进行的,x(n)是对xa(t)离散化得到的,设取样周期为Ts,则
x ( n ) = x a ( t ) ∣ t = n T s … … ( 1 ) x(n)=x_a(t)|_{t=nT_s} ……(1) x(n)=xa(t)t=nTs1
相比离散序列,理想抽样信号不是经过离散化抽样,而是通过连续信号乘上理想抽样信号得到的,即
x ^ a ( t ) = x a ( t ) δ T ( t ) … … ( 2 ) \hat{x}_a(t)=x_a(t)\delta_T(t) ……(2) x^a(t)=xa(t)δT(t)2
其中 δ T ( t ) \delta_T(t) δT(t)为周期冲激脉冲序列
δ T ( t ) = ∑ n = − ∞ ∞ δ ( t − n T s ) … … ( 3 ) \delta_T(t)=\sum\limits_{n=-\infty}^{\infty}\delta(t-nT_s) ……(3) δT(t)=n=δ(tnTs)3

2. 理想抽样信号 x ^ a ( t ) \hat{x}_a(t) x^a(t)的拉普拉斯变换 X ^ a ( s ) \hat{X}_a(s) X^a(s)

δ T ( t ) \delta_T(t) δT(t)可展开为周期傅里叶级数
δ T ( t ) = 1 T s ∑ k = − ∞ ∞ e j k Ω s t … … ( 4 ) \delta_T(t)=\frac{1}{T_s}\sum\limits_{k=-\infty}^{\infty}e^{jk\Omega_st}……(4) δT(t)=Ts1k=ejkΩst4)
则理想抽样信号的拉普拉斯变换为
X ^ a ( s ) = ∫ − ∞ ∞ x ^ a ( t ) e − s t   d t = ∫ − ∞ ∞ x a ( t ) δ T ( t ) e − s t   d t \hat{X}_a(s)=\int_{-\infty}^{\infty}\hat{x}_a(t)e^{-st}\,dt=\int_{-\infty}^{\infty}x_a(t)\delta_T(t)e^{-st}\,dt X^a(s)=x^a(t)estdt=xa(t)δT(t)estdt = ∫ − ∞ ∞ x a ( t ) [ 1 T s ∑ k = − ∞ ∞ e j k Ω s t ] e − s t   d t = 1 T s ∑ k = − ∞ ∞ ∫ − ∞ ∞ x a ( t ) e − ( s − j k Ω s ) t   d t =\int_{-\infty}^{\infty}x_a(t)[\frac{1}{T_s}\sum\limits_{k=-\infty}^{\infty}e^{jk\Omega_st}]e^{-st}\,dt=\frac{1}{T_s}\sum\limits_{k=-\infty}^{\infty}\int_{-\infty}^{\infty}x_a(t)e^{-(s-jk\Omega_s)t}\,dt =xa(t)[Ts1k=ejkΩst]estdt=Ts1k=xa(t)e(sjkΩs)tdt

X ^ a ( s ) = 1 T s ∑ k = − ∞ ∞ X a ( s − j k Ω s ) … … ( 5 ) \hat{X}_a(s)=\frac{1}{T_s}\sum\limits_{k=-\infty}^{\infty}X_a(s-jk\Omega_s)……(5) X^a(s)=Ts1k=Xa(sjkΩs)5
(5)式表明,理想抽样信号的拉普拉斯变换,是其原信号在s平面上沿虚轴的周期延拓。

另外,由(2)(3)两式, x ^ a ( t ) \hat{x}_a(t) x^a(t)也可表示为
x ^ a ( t ) = ∑ n = − ∞ ∞ x a ( n T s ) δ ( t − n T s ) … … ( 6 ) \hat{x}_a(t)=\sum\limits_{n=-\infty}^{\infty}x_a(nT_s)\delta(t-nT_s) ……(6) x^a(t)=n=xa(nTs)δ(tnTs)6
据此做拉普拉斯变换
X ^ a ( s ) = ∫ − ∞ ∞ [ ∑ n = − ∞ ∞ x a ( n T s ) δ ( t − n T s ) ] e − s t   d t \hat{X}_a(s)=\int_{-\infty}^{\infty}[\sum\limits_{n=-\infty}^{\infty}x_a(nT_s)\delta(t-nT_s)]e^{-st}\,dt X^a(s)=[n=xa(nTs)δ(tnTs)]estdt = ∑ n = − ∞ ∞ x a ( n T s ) ∫ − ∞ ∞ δ ( t − n T s ) e − s t   d t =\sum\limits_{n=-\infty}^{\infty}x_a(nT_s)\int_{-\infty}^{\infty}\delta(t-nT_s)e^{-st}\,dt =n=xa(nTs)δ(tnTs)estdt

X ^ a ( s ) = ∑ n = − ∞ ∞ x a ( n T s ) e − s n T s … … ( 7 ) \hat{X}_a(s)=\sum\limits_{n=-\infty}^{\infty}x_a(nT_s)e^{-snT_s} ……(7) X^a(s)=n=xa(nTs)esnTs7
结合(3)(7)两式,有
X ( z ) ∣ z = e s T s = 1 T s ∑ k = − ∞ ∞ X a ( s − j k Ω s ) … … ( 8 ) X(z)|_{z=e^{sT_s}}=\frac{1}{T_s}\sum\limits_{k=-\infty}^{\infty}X_a(s-jk\Omega_s)……(8) X(z)z=esTs=Ts1k=Xa(sjkΩs)8
即当 z = e s T s z=e^{sT_s} z=esTs时,序列的z变换时原信号拉普拉斯变换在s平面上沿着虚轴的周期延拓。这意味着z平面上的某个区域的z变换对应着s平面上某个区域的拉普拉斯变换。
s = σ + j Ω s=\sigma+j\Omega s=σ+jΩ z = r e j ω z=re^{j\omega} z=rejω,则有 r e j ω = e ( σ + j Ω ) T s = e σ T s e j Ω T s re^{j\omega}=e^{(\sigma+j\Omega)T_s}=e^{\sigma{T_s}}e^{j\Omega{T_s}} rejω=e(σ+jΩ)Ts=eσTsejΩTs

{ r = e σ T s ω = Ω T s … … ( 9 ) \begin{cases} r=e^{\sigma{T_s}} \\ \omega=\Omega{T_s} \end{cases} ……(9) {r=eσTsω=ΩTs9

  • 7
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值