Softmax, stable softmax, cross entropy loss

博客主要介绍了softmax公式,它是一种平滑的归一化,会给较大数值更大权重,但可能导致溢出问题。为避免溢出,引出了stable softmax,通过分子分母同乘一个数化简实现。此外,还给出了cross entropy loss的参考链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.softmax 公式:

python:

def softmax(X):

    exps = np.exp(X) 

    return exps / np.sum(exps)

对于softmax理解,就是一种平滑的归一化。假如我们使用线性的归一化,就很均匀,softmax相当于给比较大的数值大的权重,比如python里面:

plt.plot(range(1, 20), np.exp(range(1, 20)))

 

np.exp(20) = 485165195.40979028

越大的数占的得权重就越大。

 

这样造成一个问题,如果某个数比较大,可以参考https://blog.csdn.net/qq_39575835/article/details/88239982

最大也就 1.7x10^308这么大,所以为了避免溢出,stable softmax 就出来了

 

 

2.stable softmax

分子分母同乘一个数,比值不变。一般而言C= max(sample)

 

python 代码就是

def stable_softmax(X): 

    exps = np.exp(X - np.max(X)) 

    return exps / np.sum(exps)

化简步骤如下:

我在图中标注的M 是一个常数,大家一般都用 - max(x)来约束。所以stable softmax两行代码就撸完了。

 

 

 

3.cross entropy loss

 

 

reference:
https://deepnotes.io/softmax-crossentropy

https://blog.csdn.net/u014380165/article/details/77284921

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值