矩阵理论| 特殊矩阵:初等矩阵(1) - (行列式、逆矩阵、特征向量)、初等矩阵的相关定理和性质

初等矩阵

初等矩阵(elementary matrix)形如 I + u v T \mathbf I+\bold {u} \bold {v}^T I+uvT其中 u v T \bold u\bold v^T uvT为秩1矩阵(列向量乘以行向量,称为外积),并且满足 v T u = u T v ≠ − 1 \bold {v}^T\bold {u}=\bold {u}^T\bold {v}\neq -1 vTu=uTv=1(原因后面说)

下一篇文章会指出,基本镜射矩阵/Householder矩阵(酉矩阵)、初等行变换矩阵,都属于初等矩阵

初等矩阵的行列式、逆矩阵

初等矩阵 I + u v T \mathbf I+\bold {u} \bold {v}^T I+uvT的行列式为: d e t ( I + u v T ) = 1 + v T u det(\mathbf I+\bold {u} \bold {v}^T)=1+\bold {v}^T\bold {u} det(I+uvT)=1+vTu

证明:
根据矩阵行列式引理 (matrix determinant lemma), det ⁡ ( A + u v T ) = ( 1 + v T A − 1 u ) ( det ⁡ A ) \operatorname{det}\left(A+\mathbf{u v}^{T}\right)=\left(1+\mathbf{v}^{T} A^{-1} \mathbf{u}\right)(\operatorname{det} A) det(A+uvT)=(1+vTA1u)(detA),带入直接可得结果

初等矩阵 I + u v T \mathbf I+\boldsymbol{u} \boldsymbol{v}^T I+uvT的逆矩阵为: ( I + u v T ) − 1 = I − u v T 1 + v T u = I − u v T d e t ( I + u v T ) {(\boldsymbol I + \bold u{\bold v^T})^{ - 1}} = \boldsymbol I - \frac{{\bold u{\bold v^T}}}{{1 + {\bold v^T}\bold u}}=\boldsymbol I - \frac{{\bold u{\bold v^T}}}{det(\mathbf I+\bold {u} \bold {v}^T)} (I+uvT)1=I1+vTuuvT=Idet(I+uvT)uvT注意:一切初等矩阵都是可逆的

  • 初等矩阵的逆 ( I + u v T ) − 1 = I − u v T 1 + v T u {(\boldsymbol I + \bold u{\bold v^T})^{ - 1}} = \boldsymbol I - \frac{{\bold u{\bold v^T}}}{{1 + {\bold v^T}\bold u}} (I+uvT)1=I1+vTuuvT也是初等矩阵(分母不为0,要求 v T u ≠ − 1 \bold {v}^T\bold {u}\neq -1 vTu=1
  • 初等矩阵的转置 ( I + u v T ) T = I + v u T {(\boldsymbol I + \bold u{\bold v^T})^{ T}}=\boldsymbol I + \bold v{\bold u^T} (I+uvT)T=I+vuT也是初等矩阵;

初等矩阵的特征值与特征向量

I + u v T \boldsymbol I + \bold u{\bold v^T} I+uvT的特征向量:
u \bold u u v \bold v v为零向量时,退化为 I \boldsymbol I I,下面只讨论 u \bold u u v \bold v v均不是零向量的情况)

  • 必有特征向量: s p a n { v } ⊥ span\{\bold v\}^{\bot } span{v}的一组基 { x 1 , x 2 , . . . , x n − 1 } \{\bold x_1,\bold x_2,...,\bold x_{n-1}\} {x1,x2,...,xn1} n − 1 n-1 n1个无关特征向量),特征值均为1

理解:
对于 s p a n { v } ⊥ span\{\bold v\}^{\bot } span{v}(直线 s p a n { v } span\{\bold v\} span{v}的正交补)中的任意向量 x \bold x x,由于 x T v = 0 \bold x^T\bold v=0 xTv=0,有 ( I + u v T ) x = x + x ( v T x ) = x (\boldsymbol I + \bold u{\bold v^T})\bold x=\bold x+\bold x(\bold v^T\bold x)=\bold x (I+uvT)x=x+x(vTx)=x
又因为 d i m [ s p a n { v } ⊥ ] = n − 1 dim[span\{\bold v\}^{\bot }]=n-1 dim[span{v}]=n1,可以找到 n − 1 n-1 n1个无关的向量 { x 1 , x 2 , . . . , x n − 1 } \{\bold x_1,\bold x_2,...,\bold x_{n-1}\} {x1,x2,...,xn1}

  • 必有特征向量: u \bold u u,特征值 1 + v T u 1 +{\bold v^T} \bold u 1+vTu
    (注意,前提是 u ∉ s p a n { v } ⊥ \bold u\notin span\{\bold v\}^{\bot } u/span{v},或者说 v T u ≠ 0 \bold {v}^T\bold {u}\neq 0 vTu=0,否则 u \bold u u包含于上面讨论过的特征向量中)

理解:
下式必然成立: ( I + u v T ) u = u + u ( v T u ) = ( 1 + v T u ) u (\boldsymbol I + \bold u{\bold v^T})\bold u=\bold u+\bold u(\bold v^T\bold u)=(1 +{\bold v^T} \bold u)\bold u (I+uvT)u=u+u(vTu)=(1+vTu)u

最终给出结论(分两种情况讨论):
①当 u \bold u u不垂直于 v \bold v v u ∉ s p a n { v } ⊥ \bold u\notin span\{\bold v\}^{\bot } u/span{v},或者说 v T u = u T v ≠ 0 \bold {v}^T\bold {u}=\bold {u}^T\bold {v}\neq 0 vTu=uTv=0
n n n个无关的特征向量 { x 1 , x 2 , . . . , x n − 1 , u } \{\bold x_1,\bold x_2,...,\bold x_{n-1},\bold u\} {x1,x2,...,xn1,u},特征值 λ ( I + u v T ) = { 1 , 1 , ⋯   , 1 , 1 + v H u } \lambda(\boldsymbol I + \bold u{\bold v^T})=\left\{1, 1, \cdots,1, 1+\boldsymbol{v}^{H} \boldsymbol{u}\right\} λ(I+uvT)={1,1,,1,1+vHu}

②当 u \bold u u垂直于 v \bold v v u ∈ s p a n { v } ⊥ \bold u\in span\{\bold v\}^{\bot } uspan{v},或者说 v T u = u T v = 0 \bold {v}^T\bold {u}=\bold {u}^T\bold {v}= 0 vTu=uTv=0
只有 n − 1 n-1 n1个无关的特征向量 { x 1 , x 2 , . . . , x n − 1 } \{\bold x_1,\bold x_2,...,\bold x_{n-1}\} {x1,x2,...,xn1},特征值全为1(代数重数为 n n n,几何重数 n − 1 n-1 n1),从而不可对角化

例题:设 u = [ 1 , − 1 , 1 ] T \bold u=[1,-1,1]^T u=[1,1,1]T,且 A = I + 5 u u T \bold A=\bold I+5\bold u\bold u^T A=I+5uuT,求 u T A − 1 u \bold u^T\bold A^{-1}\bold u uTA1u
解1:常规方法是求 A − 1 \bold A^{-1} A1然后求答案 u T A − 1 u \bold u^T\bold A^{-1}\bold u uTA1u
解2:
利用特征向量的知识, A u = u + 5 u ( u T u ) = 16 u \bold A\bold u=\bold u+5\bold u (\bold u^T\bold u)=16\bold u Au=u+5u(uTu)=16u
因此逆矩阵有特征值 1 16 \frac{1}{16} 161,满足 A − 1 u = 1 16 u \bold A^{-1}\bold u=\frac{1}{16}\bold u A1u=161u
所以 u T A − 1 u = 1 16 u T u = 3 16 \bold u^T\bold A^{-1}\bold u=\frac{1}{16}\bold u^T\bold u=\frac{3}{16} uTA1u=161uTu=163

初等矩阵的相关定理和性质

初等矩阵是可逆矩阵的基本组件

任意非奇异/可逆矩阵,必然可以分解为若干个初等矩阵之积
或者说:矩阵 A \bold A A为可逆矩阵    ⟺    \iff A \bold A A能表示为初等矩阵之积

理解:
在矩阵求逆时,我们学习过Gauss-Jordan法:将矩阵 A \bold A A通过初等行变换消元得到单位阵 I \bold I I,同时就能求出 A − 1 \bold A^{-1} A1
现在将对 A \bold A A执行的初等行变换操作记为 E 1 , E 2 , . . . , E k E_1,E_2,...,E_k E1,E2,...,Ek,则消元过程为 E k . . . E 2 E 1 A = I E_k...E_2E_1\bold A=\bold I Ek...E2E1A=I可见,可逆矩阵 A \bold A A必然可以分解为一系列初等矩阵之积: A = E 1 − 1 E 2 − 1 . . . E k − 1 \bold A=E_1^{-1}E_2^{-1}...E_k^{-1} A=E11E21...Ek1

初等矩阵可完成任意两向量之间的映射

对于任意的 a , b ∈ C n \bold a,\bold b\in \mathbb C^{n} a,bCn,必然存在初等矩阵,使得 ( I + u v T ) a = b (\boldsymbol I + \bold u{\bold v^T})\bold a=\bold b (I+uvT)a=b,并且其中初等矩阵满足 u = a − b v T a \bold u=\frac{\bold a-\bold b}{\bold v^T \bold a} u=vTaab

应用:解方程组
从高斯消元法来看,此性质就是说,一定存在初等矩阵,能够将每一列 a \boldsymbol a a消元为主元列 b \boldsymbol b b
具体消元的初等矩阵就是之后要介绍的初等下三角矩阵
在这里插入图片描述

reference:
特殊矩阵 (10):基本矩阵
基本矩阵的几何意义

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值