
第二就是各个维度的权重,看到底要裁谁,从数据的角度来说,每个人都应该有一个裁员的系数,这个数据是各个维度结合各个各个维度打分的权重,再相加得到一个数据,根据这个数据来出裁员的名单。当然也有些企业可能会有一票否决权,就是年龄只要超过35 就一刀切裁员。 绩效KPI分值 40% 岗位能力评估分 15% 价值观评估分 10% 年龄分选分值 10% 潜力分值 15%
学历分值 10% 根据同的学历 ,不同的年龄给与不同的分值,比如你35以上的2分 25-25 5分,25以下 10分。类似这样的分值形式,给与不同维度,不同的数据分值,最后结合权重,生成每个岗位i的岗位价值分。 第三个就是我们有了岗位价值分后,那到底应该裁谁,这个就是涉及到数据对标的标准型,这些分值到底是谁和谁比呢,一般情况下我们是同岗位进行对标,因为同岗位才有相同的标准,才可以进行对标。我们通过案例来讲解。

如果A的年薪小于B的年薪,这个时候就算每一元年薪的价值分,就是价值分值/ 年薪,年薪的价值分小的被裁员。 在企业内部,我们可以对岗位价值分进行排序,再结合年薪的数据,通过这种算法来分析判断裁哪个员工。
当然我们给大家的是一个思路,具体的还是要根据企业的具体情况进行维度的设计和权重的设计,这种用算法来裁员比起主观的裁员更加的科学,用数据来做决策。 学习更多人力资源的数据分析思维,