这几年我们在企业里面一直在讲降本增效,但是降本增效的一个前提是,你是否能够识别你们企业的效能。所谓的效能的识别,就是你有没有去计算出你们公司每年的这些人效关键指标的数据,以及行业的这些人效对标的效能的数据。
那你每年在进行人效数据分析的时候,是否能够去把你们公司的人效数据跟行业,或者跟你们历史的人效数据去进行对标。同时我们在做人效数据分析的时候,我们不单单是看你的人效的数据表,其实我们是要把我们的效能和成本的这些数据指标去构建成一个数据仪表盘。
同时我们在数据仪表盘里面通过多个维度的数据交互,能够更好的在我们人效里面去进行人效的分析。当然我们数据的交互,一方面我们可以通过时间维度进行数据对标交互,来对标我们不同时间段一个人效趋势。
通过人效趋势的分析,能够帮我们去预测未来的一些人效关键指标的数据。比如说我们在你年底在做人力资源规划的时候,我们会去规划明年的人力资源的人员的编制,或者是规划明年的人力成本的数据。 这些其实都可以通过我历史的人效数据来进行一些回归的预测,来得到数据。除了跟历史的时间对比以外,我们还要跟行业的数据去进行对标。 对于行业的数据对标的话,其实我们就需要去获得在我们同行业里面跟我体量相等,产品差不多的行业的这些公司,他们的一些人效数据,从而帮我来分析判断我们公司的人效在这个行业里面到底是一个什么样的水平。 我们在公众号的上一篇文章里面,我们就讲到了如何用AI来帮我们去爬取行业的数据。但是如果说我今天行业的数据也爬取了,然后我自己内部的人效数据也有了。那我基于我后面清洗过的这样的一张行业数据表,就能去构建数据仪表盘公众号文章: 我们先首先来来回顾一下,如果今天我要去做一个数据的模型,做一个数据一般判断它的流程,我们可以分几个步骤。
第一步骤:
数据仪表盘的关键指标数据。在人效模型里面,我们的关键指标数据分成几个。
1、人力成本效率
2、人力成本、利润效率。
3、全员劳动生产率。
4、人力成本含量,
5、人净利润率,
通过人效趋势的分析,能够帮我们去预测未来的一些人效关键指标的数据。比如说我们在你年底在做人力资源规划的时候,我们会去规划明年的人力资源的人员的编制,或者是规划明年的人力成本的数据。 这些其实都可以通过我历史的人效数据来进行一些回归的预测,来得到数据。除了跟历史的时间对比以外,我们还要跟行业的数据去进行对标。 对于行业的数据对标的话,其实我们就需要去获得在我们同行业里面跟我体量相等,产品差不多的行业的这些公司,他们的一些人效数据,从而帮我来分析判断我们公司的人效在这个行业里面到底是一个什么样的水平。 我们在公众号的上一篇文章里面,我们就讲到了如何用AI来帮我们去爬取行业的数据。但是如果说我今天行业的数据也爬取了,然后我自己内部的人效数据也有了。那我基于我后面清洗过的这样的一张行业数据表,就能去构建数据仪表盘公众号文章: 我们先首先来来回顾一下,如果今天我要去做一个数据的模型,做一个数据一般判断它的流程,我们可以分几个步骤。

第二步 数据原始表
我们要有人效数据的数据源的表。这个表里面我的表头字段包含了我的历史的前面五年的数据,同时在这个表里面又需要有我的行业里面的人效指标数据。所以除了一些我人效的关键指标数据以外,还需要有些字段数据,比如说人数、人力成本、营收、净利润等这些这
第三步,
数据的分析的维度。
当我构建完了数据模型以后,我应该从哪些维度来做分析。我们在人效模型里面主要从两个维度做分析。第一个维度是时间的维度。我想看一下,每年跟我对标的这些行业竞争公司,我们的数据是什么样的,谁高谁低。我们需要有一个排名,第二个就是公司的维度。我想看一下,2023年我们公司人效的各个指标的数据。所以在我们做仪表盘的切片器里面,我们就会做两个切片器,一个切片器是时间切片器,另外一个切片器是公司切片器。
第四步:
数据建模。
我前面思维全部梳理完了以后,我就需要打开电脑,我用power BI的工具来构成整个数据仪表盘的构建。当然excel也可以用,但是excel比起PBI来讲,在做整个数据仪表盘建模的过程中,相对来说会更加复杂一点。包括你后面的排版、美化、周期,并且会更加难的,但是PBI其实在整个数据建模里面,它已经非常智能了。它除了本做数据模型以外,它还可以引入AI的工具,用AI更好的帮你做数据的建模,更好的帮你做数据的分析。
第五步 数据分析思维和报告。
如果你完成了数据仪表盘以后,那接下来你要基于这样的数据表盘,你要去生成数据分析的报告,你要去分析一下各个指标之间的关系。你要写一份基于人效的分析报告,所以这个是我们在做整个数据仪表盘的这五个步骤。
基于这五个步骤,我们接下来大家看到我们下面这个截图,下面这个截图是我们人效数据的标准的数据源。基于这个标准的数据源,我们就可以开始来做仪表盘,然后在我们分析步骤里面的数据关键指标的一个步骤。我们在数据源里面,我们已经帮大家都算好了。所以你在这个数据表里面基本能看到我们所有的数据指标的数据源都在这个地方了。然后数据的清洗、处理,我们已经完成了。因为这些数据我们都是通过AI帮我们生成的。我们在上篇文章里面讲到了如何用AI帮你爬取行业数据的。我们用的是谷歌的gemini,谷歌的gemini的话非常方便。只要你给他指令,我们就可以获得行业的数据。
这个表述完以后,我们在数据仪表盘里面,我们分了几个区域。
大家所看到下面我们的截图画面,最上面那个区域是关键指标,我能看到每年的公司人效的关键指标,以及日常的效率、利润率、营收、净利润、人均工资、劳动生产率。然后在下面我们就分成了图表区。图表区里面,首先你能够看到是公司在今年的人效指标,指标的数据呈现一个趋势。

比如说我们看到公司的人数、人力成本,营收、净利润等等。这就是一个我们全局的能够看到一个趋势。然后在这个图表的右边,大家能看到是两个比较大的图,这两个都是通过折线图。这两个大的图主要是对标行业的,就是我能够通过时间维度跟通过公司维度能看到任意一个时间段,任意一家公司的数据。
然后在前面这里面我们加了几个切片器,第一个切片器是指标切片器。通过这个指标切片器,我能够看到的是我的每一个指标,我的数据趋势以及每一个指标的数据对标。然后加了一个部门的公司的维度。我能看到每一个公司的数据,然后加了一个时间的维度。