岭回归预测波士顿房价

岭回归预测boston房价

#岭回归推导
f ( θ ) = 1 / 2 ∣ ∣ A θ − y ∣ ∣ 2 2 + λ / 2 ∣ ∣ θ ∣ ∣ 2 2 = 1 / 2 ( A θ − y ) T ( A θ − y ) + λ / 2 θ T θ f(\theta) = 1/2||A\theta-y||_2^2 + \lambda/2 ||\theta||_2^2=1/2(A\theta - y)^T( A \theta - y) +\lambda/2\theta^T\theta f(θ)=1/2Aθy22+λ/2θ22=1/2(Aθy)T(Aθy)+λ/2θTθ
= θ T A T A θ − θ T A y − y T A θ + y T y + λ / 2 θ T θ = \theta^T A^TA\theta - \theta^TAy-y^TA\theta+y^Ty+\lambda/2\theta^T\theta =θTATAθθTAyyTAθ+yTy+λ/2θTθ
上式对 θ \theta θ求导,
A T A θ − A T y + λ θ = 0 A^TA\theta - A^Ty+\lambda\theta = 0 ATAθATy+λθ=0
求得 θ \theta θ为,
θ = ( A T A + λ I ) − 1 A T y \theta = (A^TA+\lambda I)^{-1}A^Ty θ=(ATA+λI)1ATy
其中I为A^TA对应的单位矩阵,学习率\lambda比较小,取0.01左右。

代码部分:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt

#提取数据并进行分割训练集和测试集
house = datasets.load_boston()
x = house.data
y = house.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

#根据最小二乘法建立线性回归模型
class LR:
    def fit(self, X, Y):
        X = np.asmatrix(X.copy())
        Y = np.asmatrix(Y).reshape(-1,1) #列向量
        print(np.shape(X)[1])
        self.w = (X.T * X).I * X.T * Y  #调用最小二乘法求得的系数矩阵
    def predict(slef, X):
        X = np.asmatrix(X.copy())
        result = X * slef.w
        return np.asarray(result).ravel()

#岭回归
class ridge_LR:
    def fit(self, X, Y):
        X = np.mat(X.copy())
        Y = np.mat(Y).reshape(-1,1)
        C = np.eye(np.shape(X)[1])
        lam = 0.01
        self.v = (X.T * X + lam * C).I * X.T * Y #C为单位矩阵
    def predict(self, X):
        X = np.mat(X.copy())
        result = X * self.v
        return np.asarray(result).ravel()  

#改变输入矩阵,在最前边增加一列
b = np.ones(len(x_train))
c = np.ones(len(x_test))
x_train = np.insert(x_train, 0, values = b, axis = 1)
x_test = np.insert(x_test, 0, values = c, axis = 1)

#调用线性回归函数
lr = LR()
lr.fit(x_train, y_train)
y_lr_pred = lr.predict(x_test)
#print(y_lr_pred)
#print(lr.w) #系数矩阵
error_2 = mean_squared_error(y_test, y_lr_pred)
#print(error_2)

#调用岭回归函数
ridge_lr = ridge_LR()
ridge_lr.fit(x_train, y_train)
y_ridge_pred = lr.predict(x_test)
print(y_ridge_pred)
print(ridge_lr.v)
error_3 = mean_squared_error(y_test, y_ridge_pred)
print(error_3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值