推导Lasso回归
一、推导过程
Lasso方法是在普通线性模型中增加 L 1 L_1 L1惩罚项,有助于降低过拟合风险,更容易获得稀疏解,求得的 θ \theta θ会有更少的非零分量。与岭回归的不同在于,此约束条件使用了绝对值的一阶惩罚函数代替了平方和的二阶函数。
Lasso回归原式: arg min θ ∣ ∣ A θ − y ∣ ∣ 2 2 + λ ∣ ∣ θ ∣ ∣ 1 \mathop{\arg\min}\limits_{\theta}||A\theta-y||_2^2+\lambda||\theta||_1 θargmin∣∣Aθ−y∣∣22+λ∣∣θ∣∣1
公式转换为: arg min θ 1 2 ∣ ∣ A θ − y ∣ ∣ 2 2 + 1 2 λ ∣ ∣ W θ ∣ ∣ 2 2 \mathop{\arg\min}\limits_{\theta}\frac{1}{2}||A\theta-y||_2^2+\frac{1}{2}\lambda||W\theta||_2^2 θargmin21∣∣Aθ−y∣∣22+21λ∣∣Wθ∣∣22
= arg min θ 1 2 ( A θ − y ) T ( A θ − y ) + 1 2 λ ( W θ ) T W θ \mathop{\arg\min}\limits_{\theta}\frac{1}{2}(A\theta-y)^T(A\theta-y)+\frac{1}{2}\lambda(W\theta)^TW\theta θargmin2