推导Lasso回归

本文详细介绍了Lasso回归的推导过程,阐述了其在降低过拟合风险和获取稀疏解的优势。通过Python代码展示了Lasso回归的实现,并应用于人脸识别任务,探讨了不同超参数λ对模型稀疏性的影响。实验结果显示,λ的选择直接影响到模型的稀疏性和预测效果。
摘要由CSDN通过智能技术生成

推导Lasso回归

一、推导过程

​ Lasso方法是在普通线性模型中增加 L 1 L_1 L1惩罚项,有助于降低过拟合风险,更容易获得稀疏解,求得的 θ \theta θ会有更少的非零分量。与岭回归的不同在于,此约束条件使用了绝对值的一阶惩罚函数代替了平方和的二阶函数。

Lasso回归原式: arg ⁡ min ⁡ θ ∣ ∣ A θ − y ∣ ∣ 2 2 + λ ∣ ∣ θ ∣ ∣ 1 \mathop{\arg\min}\limits_{\theta}||A\theta-y||_2^2+\lambda||\theta||_1 θargminAθy22+λθ1

公式转换为: arg ⁡ min ⁡ θ 1 2 ∣ ∣ A θ − y ∣ ∣ 2 2 + 1 2 λ ∣ ∣ W θ ∣ ∣ 2 2 \mathop{\arg\min}\limits_{\theta}\frac{1}{2}||A\theta-y||_2^2+\frac{1}{2}\lambda||W\theta||_2^2 θargmin21Aθy22+21λWθ22

​ = arg ⁡ min ⁡ θ 1 2 ( A θ − y ) T ( A θ − y ) + 1 2 λ ( W θ ) T W θ \mathop{\arg\min}\limits_{\theta}\frac{1}{2}(A\theta-y)^T(A\theta-y)+\frac{1}{2}\lambda(W\theta)^TW\theta θargmin2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值