Transformer

1.Transformer

  1. Transformer 是一种新的、基于 attention 机制来实现的特征提取器,可用于代替 CNNRNN 来提取序列的特征。

    Transformer 首次由论文 《Attention Is All You Need》 提出,在该论文中 Transformer 用于 encoder - decoder 架构。事实上 Transformer 可以单独应用于 encoder 或者单独应用于 decoder

  2. Transformer 相比较 LSTM 等循环神经网络模型的优点:

    • 可以直接捕获序列中的长距离依赖关系。

    • 模型并行度高,使得训练时间大幅度降低。

1.1结构

  1. 论文中的 Transformer 架构包含了 encoderdecoder 两部分,其架构如下图所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静心问道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值