文章目录
一、数学原理
逻辑斯谛回归模型(Logistic regression)是对数线性模型,经典的分类方法。
算法思路: 给定输入实例x,分别利用二项逻辑斯谛回归模型计算P(Y=1|x)与P(Y=0|x),比较两个概率值的大小,将x分到概率较大的那一类。
**算法特点:**通过逻辑斯谛回归模型的定义式 P(Y=1|x) 可以将线性函数 ω \omega ω*x转换为概率值,线性函数值 ω \omega ω*x越接近正无穷,概率值越接近为1,线性函数越接近负无穷,概率值越接近为0。
(1)逻辑斯谛回归
设X为连续随机变量,X服从逻辑斯谛分布是指X具有以下分布函数F(x)和密度函数f(x)
分布函数F(x)和密度函数f(x)的图形为,F(x)以( μ \mu μ,1/2)为中心对称。
(2)二项逻辑斯谛回归模型
二项逻辑斯谛回归模型满足如下条件概率
x(n维特征向量)为输入,Y ∈ \in ∈{0,1}为输出, ω \omega