机器学习算法之--逻辑斯谛回归总结

本文深入探讨逻辑斯谛回归的数学原理,包括模型定义、参数估计和与线性回归的对比。介绍了逻辑斯谛回归在分类问题中的作用,通过sklearn实现线性与逻辑回归,并讨论其在实际应用中的学习率选择和优缺点。
摘要由CSDN通过智能技术生成

一、数学原理

逻辑斯谛回归模型(Logistic regression)是对数线性模型,经典的分类方法。

算法思路: 给定输入实例x,分别利用二项逻辑斯谛回归模型计算P(Y=1|x)与P(Y=0|x),比较两个概率值的大小,将x分到概率较大的那一类。

**算法特点:**通过逻辑斯谛回归模型的定义式 P(Y=1|x) 可以将线性函数 ω \omega ω*x转换为概率值,线性函数值 ω \omega ω*x越接近正无穷,概率值越接近为1,线性函数越接近负无穷,概率值越接近为0。

(1)逻辑斯谛回归

设X为连续随机变量,X服从逻辑斯谛分布是指X具有以下分布函数F(x)和密度函数f(x)
在这里插入图片描述
分布函数F(x)和密度函数f(x)的图形为,F(x)以( μ \mu μ,1/2)为中心对称。
在这里插入图片描述

(2)二项逻辑斯谛回归模型

二项逻辑斯谛回归模型满足如下条件概率
在这里插入图片描述
x(n维特征向量)为输入,Y ∈ \in {0,1}为输出, ω \omega

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值