各种误差区别总结: 方差、标准差、均方差、均方误差、均方根误差

本文详细介绍了方差、标准差、均方误差(MSE)和均方根误差(RMSE)的概念及它们之间的关系。均方误差是误差平方和的平均数,而均方根误差是MSE的平方根,更敏感于异常值。标准差衡量数据的离散程度,而RMSE则用于评估观测值与真实值的偏差。平均绝对误差(MAE)作为另一种度量,更直观地反映了预测误差的实际大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要转载自 以下几个链接:
[1] 方差、标准差、均方差、均方误差区别总结 https://blog.csdn.net/Leyvi_Hsing/article/details/54022612
[2] 均方根误差(RMSE),平均绝对误差(MAE),标准差(Standard Deviation)的对比 https://blog.csdn.net/capecape/article/details/78623897
[3] 均方根误差RMSE(Root Mean Square Error) https://blog.csdn.net/yql_617540298/article/details/104212354

一、 各种误差

1.1 方差

  • 数据偏离平均值的平方和的平均。
    在这里插入图片描述

1.2 标准差 (Standard Deviation) = 均方差

  • 标准差(Standard Deviation) ,中文环境中又常称均方差。
  • 标准差是数据偏离平均值的平方和平均后的方根,用σ表示。
  • 标准差是方差的算术平方根。

从上面定义我们可以得到以下几点:
1、均方差就是标准差,标准差就是均方差
2、均方差 不同于 均方误差
3、均方误差是各数据偏离真实值的距离平方和的平均数
在这里插入图片描述

1.3 均方差 = 标准差

1.4 均方误差 (Mean Square Error) (MSE)

  • 均方误差是各数据偏离真实值的距离平方和的平均数,也即误差平方和的平均数,计算公式形式上接近方差
  • 它的开方叫均方根误差(Root Mean squared error) (RMSE),均方根误差才和标准差形式上接近。

在这里插入图片描述

1.5 均方根误差 (Root Mean squared error) (RMSE)

  • 均方误差 (Mean Square Error) (MSE) 的平方根。
  • 是观测值与真值偏差的平方和与观测次数m比值的平方根。
  • 衡量的是观测值与真实值之间的偏差,并且对数据中的异常值较为敏感。

在这里插入图片描述

1.6 平均绝对误差(Mean Absolute Error ) (MAE)

  • 是绝对误差的平均值,也就是测量值与真值之间误差的平均。
  • 能更好地反映预测值误差的实际情况.
    在这里插入图片描述

二、区别对比

RMSE与标准差对比:标准差是用来衡量一组数自身的离散程度,而均方根误差是用来衡量观测值同真值之间的偏差,它们的研究对象和研究目的不同,但是计算过程类似。

RMSE与MAE对比:RMSE相当于L2范数,MAE相当于L1范数。次数越高,计算结果就越与较大的值有关,而忽略较小的值,所以这就是为什么RMSE针对异常值更敏感的原因(即有一个预测值与真实值相差很大,那么RMSE就会很大)。

参考链接:
[1] 方差、标准差、均方差、均方误差区别总结 https://blog.csdn.net/Leyvi_Hsing/article/details/54022612
[2] 均方根误差(RMSE),平均绝对误差(MAE),标准差(Standard Deviation)的对比 https://blog.csdn.net/capecape/article/details/78623897
[3] 均方根误差RMSE(Root Mean Square Error) https://blog.csdn.net/yql_617540298/article/details/104212354

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值