使用Numpy实现机器学习

该博客介绍了如何使用Numpy库进行机器学习中的二次曲线拟合。通过生成带有噪声的数据点,然后利用随机初始化的权重和梯度下降法更新参数,最终实现对数据的拟合。代码展示了前向传播、损失函数计算、梯度求解以及模型优化过程,并以图形方式展示了预测结果与真实值的对比。
摘要由CSDN通过智能技术生成

使用Numpy实现机器学习

表达式: y = 3 x 2 + 2 y=3x^2+2 y=3x2+2

模型: y = w x 2 + b y=wx^2+b y=wx2+b

损失函数: L o s s = 1 2 ∑ i = 1 100 ( w x i 2 + b − y i ) 2 Loss=\frac{1}{2}\sum_{i=1}^{100}(wx^2_i+b-y_i)^2 Loss=21i=1100(wxi2+byi)2

对损失函数求导:
∂ L o s s ∂ w = ∑ i = 1 100 ( w x i 2 + b − y i ) 2 x i 2 \frac{\partial Loss}{\partial w}=\sum_{i=1}^{100}(wx^2_i+b-y_i)^2x^2_i wLoss=i=1100(wxi2+byi)2xi2

∂ L o s s ∂ b = ∑ i = 1 100 ( w x i 2 + b − y i ) 2 \frac{\partial Loss}{\partial b}=\sum_{i=1}^{100}(wx^2_i+b-y_i)^2 bLoss=i=1100(wxi2+byi)2

利用梯度下降法学习参数,学习率为:lr

w 1 − = l r ∗ ∂ L o s s ∂ w w_1-=lr*\frac{\partial Loss}{\partial w} w1=lrwLoss

b 1 − = l r ∗ ∂ L o s s ∂ b b_1-=lr*\frac{\partial Loss}{\partial b} b1=lrbLoss

import numpy as np
from matplotlib import pyplot as plt

1.生成训练数据

#设置随机种子,生成同一份数据
np.random.seed(100)
x = np.linspace(-1, 1, 100).reshape(100, 1)
# y在真实值上增加噪声
y = 3*np.power(x, 2)+2+0.2*np.random.rand(x.size).reshape(100, 1)

2.查看x,y分布

plt.scatter(x, y)
plt.show()

png

3.初始化权重参数

# 随即初始化参数
w1 = np.random.rand(1, 1)
b1 = np.random.rand(1, 1)

4.求解模型

lr = 0.001
for i in range(800):
    # 前向传播
    y_pred = np.power(x, 2)*w1+b1
    # 定义损失函数
    loss = 0.5 * (y_pred-y)**2
    # print(loss)
    # 对各维度求和
    loss = loss.sum()
    # 计算梯度(求导)
    grad_w = np.sum((y_pred-y)*np.power(x, 2))
    grad_b = np.sum((y_pred-y))
    # 使用梯度下降法,使得loss最小
    w1 -= lr*grad_w
    b1 -= lr*grad_b

5.结果可视化

plt.plot(x, y_pred, 'r-', label='predict')
plt.scatter(x, y, color='blue', marker='o', label='true')
plt.xlim(-1, 1)
plt.ylim(2, 6)
plt.legend()
plt.show()
# 预测值
print(w1, b1)

png

[[2.98927619]] [[2.09818307]]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

没有胡子的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值