杭电oj HDOJ 1046 Gridland
题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1046
Problem Description
For years, computer scientists have been trying to find efficient solutions to different computing problems. For some of them efficient algorithms are already available, these are the “easy” problems like sorting, evaluating a polynomial or finding the shortest path in a graph. For the “hard” ones only exponential-time algorithms are known. The traveling-salesman problem belongs to this latter group. Given a set of N towns and roads between these towns, the problem is to compute the shortest path allowing a salesman to visit each of the towns once and only once and return to the starting point.
The president of Gridland has hired you to design a program that calculates the length of the shortest traveling-salesman tour for the towns in the country. In Gridland, there is one town at each of the points of a rectangular grid. Roads run from every town in the directions North, Northwest, West, Southwest, South, Southeast, East, and Northeast, provided that there is a neighbouring town in that direction. The distance between neighbouring towns in directions North–South or East–West is 1 unit. The length of the roads is measured by the Euclidean distance. For example, Figure 7 shows 2 × 3-Gridland, i.e., a rectangular grid of dimensions 2 by 3. In 2 × 3-Gridland, the shortest tour has length 6.
Input
The first line contains the number of scenarios.
For each scenario, the grid dimensions m and n will be given as two integer numbers in a single line, separated by a single blank, satisfying 1 < m < 50 and 1 < n < 50.
Output
The output for each scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. In the next line, print the length of the shortest traveling-salesman tour rounded to two decimal digits. The output for every scenario ends with a blank line.
题目大意
测试用例给出村落整体的规格(有m行村落,每行有n个村落),要求求出从某一村庄出发,途径每一个村庄,最后回到该村庄的最短路径长度
题目大意
-
2
×
2
时
:
最
短
路
径
为
4
2\times2时:最短路径为4
2×2时:最短路径为4
- 2 × 3 时 : 最 短 路 径 为 6 2\times3时:最短路径为6 2×3时:最短路径为6
- 3 × 3 时 : 最 短 路 径 为 9.14 3\times3时:最短路径为9.14 3×3时:最短路径为9.14
所以现在可以分为两种情况:
- 当m和n有至少一个偶数时,其最短路径的长度为 m × n m\times n m×n
- 否则其最短路径的长度为 m × n − 1 + 2 m\times n-1+\sqrt{2} m×n−1+2
本人的C++解决方案
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main()
{
int N, i, m, n, count = 1;
double res;
cin >> N;
for (i = 0; i < N; i++) {
cin >> m >> n;
if (m % 2 && n % 2) {
res = m * n - 1 + sqrt(2);
}
else {
res = m * n;
}
cout << "Scenario #" << count++ << ":" << endl;
// 注意:每个测试用例的输出后都需要“换行”,最后一个测试用例也要输出!
cout << setiosflags(ios::fixed) << setprecision(2) << res << endl << endl;
}
return 0;
}
代码通过HDOJ平台运行检查,如发现错误,欢迎指出和纠正,谢谢!