前言
最近需要搞毕业设计,CTF玩耍告一段落。毕设涉及到安全与人工智能领域结合。当初真的一时冲动…当时觉得搞人工智能挺厉害的,没想太多就选了。真开始搞的时候才发现一头雾水 >_< ,之前人工智能是零基础,只用过python写过一些安全脚本,听说人工智能又要学高数,线性代数和概率论三件套,对电脑性能要求高劈里啪啦一大堆的…都是令新手望而止步的一些原因。
写这个博客也是为了解决当初一个很重要的痛点:虽然网上人工智能的资源一大把,但是这些学习的课程多而杂,针对性不强。单纯想搞应用的学习者往往会陷入两难:想搞的人工智能应用只涉及到一个或者几个算法,如果为了达到这个而把所有整个机器学习/深度学习的视频都学习了那学习的成本未免太高了。但不学习整个知识体系的话,又会觉得在这个领域摸不到门道,很容易迷失。
经历过一个月断断续续的摸索,终于摸出了一些学习的门路。在此记录一下我的摸索总结,目前仍在坚持实施中,从实战入手,针对性强,从实战代码到代码原理,再到数学原理层层递进。试图解决上面所述的痛点。
当然这个总结定位目的在安全方向的人工智能应用入门,默认有一定安全基础。
方法论
想要了解人工智能在安全的应用,兜哥的书一定要去读下gihub,他的人工智能安全入门三部曲,简单易懂,实战性强,容易让我们得到学习中的正反馈,保持学习热情。这次的入门也是以他的书为主,学习顺序如下
1.兜哥 的《Web安全之深度学习实战》(主线)
我的课题是搞深度学习,如果是搞机器学习的话直接忽略这一part。这本书的讲述方式就是,以某个实际应用的课题(例如: 垃圾邮件识别 ),他会列出这个人们为了解决这个问题应用了什么算法(机器学习的/深度学习的),然后去实验最后比较各个算法的优劣。所以可以在这本书里面选择一个自己比较感兴趣的课题,然后先看他们的实现方式,自己去github上面down源码下来在自己的机子上跑一跑,不求立马看懂,但是得对他用什么算法提取特征的,什么训练的算法有个起码的印象。
2.相关论文(主线)
在深度学习那本书中,找到相关的算法和关键字后,收集相关的论文,因为看论文能关注该算法是否被人做过了,研究过了成果如何,是否还有研究的价值,还可以从他们的文章介绍中扒到有意思的资源:比如公开的数据集
3. 兜哥的《 Web安全之机器学习入门》(支线)
这本书的讲述方式是:介绍某个算法,然后列举出这个算法在某个的实际应用的案例。如果是只想学机器学习的话,这个是一本比较好的实操书,挑自己感兴趣的算法直接学习即可。而学深度学习的小伙伴,从上面挑了自己喜欢的课题之后,只需要找到自己课题所涉及的算法学一遍就好了。还是老样子,代码跑一跑,对这个有起码的印象即可。
4. 人民邮电出版社的《 机器学习实战》(支线)
这本书是涉及的机器学习算法进行深一层的解释,里面涉及浅层的数学原理注解,大篇幅的用python去实现对应的机器学习算法,找到对应的机器学习算法进行学习。
5. 周志华的《机器学习》(支线)
如果还需继续深入,这本西瓜书会是很好的选择,他更加注重于机器学习数学原理的解释。
6. 深度学习算法的书(支线)
以上是涉及机器学习算法的书,由于本人现在还停留在机器学习算法阶段,深度学习的书还没做过多的了解,暂时无法推荐什么好书,但是套路都是一样,根据《Web安全之深度学习实战》选中课题中出现的算法,再进行针对性学习。
7. 兜哥的《 Web安全之强化学习与GAN》(支线)
不得不说,兜哥的书写得是真的好,循序渐进。刚开始学习的时候决心稳固深度学习与机器学习的相关算法再来搞GAN的,后来被各种模型评测标准等知识搞得云里雾里,后来摸清楚大概以后再看第三本,才发现关于前两本留下的问题第三本都叙述,补坑…真是看完恍然大悟,三本书的知识衔接做得非常好。
最后
-
相关博客
- 《web安全深度学习实战》之DGA
- 《web安全机器入门学习》之DGA
- 《算法原理浅探》
- 《支线知识》
-
相关资源
- github:本项目涉及的代码与相关参考文献
一切持续更新中