Holder不等式

"Holder不等式是数学中一个重要的不等式,它分为标量形式和积分形式。在标量形式中,当( p geq 1 )和( p + q = 1 ),对于所有非负实数( a_i )和( b_i ),不等式表明( sum_{i=1}
摘要由CSDN通过智能技术生成

Holder不等式

标量形式

p ≥ 1 p\ge 1 p1

a i , b i > 0 a_i,b_i>0 ai,bi>0
p , q ≥ 1 , 1 p + 1 q = 1 p,q\ge 1,\frac{1}{p}+\frac{1}{q}=1 p,q1,p1+q1=1
∑ i = 1 n a i b i ≤ ( ∑ i = 1 n a i p ) 1 p ( ∑ i = 1 n b i q ) 1 q \sum_{i=1}^{n} a_i b_i \le (\sum_{i=1}^{n}a_i^{p})^{\frac{1}{p}}(\sum_{i=1}^{n}b_i^{q})^{\frac{1}{q}} i=1naibi(i=1naip)p1(i=1nbiq)q1
当且仅当 a i ∑ i = 1 n a i p = b i ∑ i = 1 n b i q ( i = 1 , 2 , . . n ) \frac{a_i}{\sum_{i=1}^{n} a_i^{p} }=\frac{b_i}{\sum_{i=1}^{n} b_i^{q} }(i=1,2,..n) i=1naipai=i=1nbiqbi(i=1,2,..n) 时取等

证明:
a i = 0 a_i=0 ai=0 b i = 0 b_i=0 bi=0时,显然成立

a i a_i ai不全为 0 0 0 b i b_i bi不全为 0 0 0

A = a i ( ∑ i = 1 n a i p ) 1 p , B = b i ( ∑ i = 1 n b i q ) 1 q A=\frac{a_i}{(\sum_{i=1}^{n} a_i^{p})^{\frac{1}{p}} },B=\frac{b_i}{(\sum_{i=1}^{n} b_i^{q} )^{\frac{1}{q}}} A=(i=1naip)p1ai,B=(i=1nbiq)q1bi
由Young不等式
A B ≤ A p p + B q q a i b i ( ∑ i = 1 n a i p ) 1 p ( ∑ i = 1 n b i q ) 1 q ≤ 1 p a i p ∑ i = 1 n a i p + 1 q b i q ∑ i = 1 n b i q ∑ i = 1 n a i b i ( ∑ i = 1 n a i p ) 1 p ( ∑ i = 1 n b i q ) 1 q ≤ ∑ i = 1 n ( 1 p a i p ∑ i = 1 n a i p + 1 q b i q ∑ i = 1 n b i q ) ∑ i = 1 n a i b i ( ∑ i = 1 n a i p ) 1 p ( ∑ i = 1 n b i q ) 1 q ≤ ( 1 p ∑ i = 1 n a i p ∑ i = 1 n a i p + 1 q ∑ i = 1 n b i q ∑ i = 1 n b i q ) ∑ i = 1 n a i b i ≤ ( ∑ i = 1 n a i p ) 1 p ( ∑ i = 1 n b i q ) 1 q \begin{aligned} AB &\le \frac{A^{p}}{p}+\frac{B^{q}}{q}\\ \frac{a_i b_i}{(\sum_{i=1}^{n} a_i^{p})^{\frac{1}{p}}(\sum_{i=1}^{n} b_i^{q} )^{\frac{1}{q}}}&\le \frac{1}{p}\frac{a_i^p}{\sum_{i=1}^{n} a_i^{p} }+\frac{1}{q}\frac{b_i^q}{\sum_{i=1}^{n} b_i^{q}}\\ \sum_{i=1}^{n}\frac{a_i b_i}{(\sum_{i=1}^{n} a_i^{p})^{\frac{1}{p}}(\sum_{i=1}^{n} b_i^{q} )^{\frac{1}{q}}}&\le \sum_{i=1}^{n}(\frac{1}{p}\frac{a_i^p}{\sum_{i=1}^{n} a_i^{p} }+\frac{1}{q}\frac{b_i^q}{\sum_{i=1}^{n} b_i^{q}})\\ \frac{\sum_{i=1}^{n}a_i b_i}{(\sum_{i=1}^{n} a_i^{p})^{\frac{1}{p}}(\sum_{i=1}^{n} b_i^{q} )^{\frac{1}{q}}}&\le (\frac{1}{p}\frac{\sum_{i=1}^{n}a_i^p}{\sum_{i=1}^{n} a_i^{p} }+\frac{1}{q}\frac{\sum_{i=1}^{n}b_i^q}{\sum_{i=1}^{n} b_i^{q}})\\ \sum_{i=1}^{n} a_i b_i &\le (\sum_{i=1}^{n}a_i^{p})^{\frac{1}{p}}(\sum_{i=1}^{n}b_i^{q})^{\frac{1}{q}} \end{aligned} AB(i=1naip)p1(i=1nbiq)q1aibii=1n(i=1naip)p1(i=1nbiq)q1aibi(i=1naip)p1(i=1nbiq)q1i=1naibii=1naibipAp+qBqp1i=1naipaip+q1i=1nbiqbiqi=1n(p1i=1naipaip+q1i=1nbiqbiq)(p1i=1naipi=1naip+q1i=1nbiqi=1nbiq)(i=1naip)p1(i=1nbiq)q1

0<p<1

a i , b i > 0 a_i,b_i>0 ai,bi>0
0 < p < 1 , 1 p + 1 q = 1 0<p<1,\frac{1}{p}+\frac{1}{q}=1 0<p<1,p1+q1=1
∑ i = 1 n a i b i ≥ ( ∑ i = 1 n a i p ) 1 p ( ∑ i = 1 n b i q ) 1 q \sum_{i=1}^{n} a_i b_i \ge (\sum_{i=1}^{n}a_i^{p})^{\frac{1}{p}}(\sum_{i=1}^{n}b_i^{q})^{\frac{1}{q}} i=1naibi(i=1naip)p1(i=1nbiq)q1
当且仅当 a 1 b 1 − q p = a 2 b 2 − q p = ⋯ = a n b n − q p a_1 b_1^{-\frac{q}{p}}=a_2 b_2^{-\frac{q}{p}}=\dots =a_n b_n^{-\frac{q}{p}} a1b1pq=a2b2pq==anbnpq 时取等

证明:
0 < p < 1 ⇒ 1 p > 1 , q < 0 ⇒ 1 − 1 q > 0 0<p<1\Rightarrow \frac{1}{p}>1,q<0 \Rightarrow 1-\frac{1}{q}>0 0<p<1p1>1,q<01q1>0
y = x p y=x^p y=xp
y ′ ′ = p ( p − 1 ) x p − 2 < 0 ( x > 0 ) y''=p(p-1)x^{p-2}<0(x>0) y′′=p(p1)xp2<0(x>0)
由Jensen不等式
( ∑ i = 1 n p i x i ∑ i = 1 n p i ) p ≥ ∑ i = 1 n p i x i p ∑ i = 1 n p i ∑ i = 1 n p i x i ≥ ( ∑ i = 1 n p i x i p ) 1 p ( ∑ i = 1 n p i ) p − 1 p ∑ i = 1 n p i x i ≥ ( ∑ i = 1 n p i x i p ) 1 p ( ∑ i = 1 n p i ) 1 q \begin{aligned} (\frac{\sum_{i=1}^{n}p_ix_i}{\sum_{i=1}^{n} p_i })^p &\ge \frac{\sum_{i=1}^{n}p_ix_i^p}{\sum_{i=1}^{n} p_i }\\ \sum_{i=1}^{n}p_ix_i &\ge (\sum_{i=1}^{n}p_ix_i^p)^{\frac{1}{p}}(\sum_{i=1}^{n}p_i)^{\frac{p-1}{p}}\\ \sum_{i=1}^{n}p_ix_i &\ge (\sum_{i=1}^{n}p_ix_i^p)^{\frac{1}{p}}(\sum_{i=1}^{n}p_i)^{\frac{1}{q}}\\ \end{aligned} (i=1npii=1npixi)pi=1npixii=1npixii=1npii=1npixip(i=1npixip)p1(i=1npi)pp1(i=1npixip)p1(i=1npi)q1
{ p i x i p = a i p p i = b i q ⇒ { p i = b i q x i = a i b i − q p \begin{cases} p_ix_i^p=a_i^p\\ p_i=b_i^q \end{cases}\Rightarrow \begin{cases} p_i=b_i^q\\ x_i=a_i b_i^{-\frac{q}{p}} \end{cases} {pixip=aippi=biq{pi=biqxi=aibipq
∑ i = 1 n a i b i ≥ ( ∑ i = 1 n a i p ) 1 p ( ∑ i = 1 n b i q ) 1 q \sum_{i=1}^{n} a_i b_i \ge (\sum_{i=1}^{n}a_i^{p})^{\frac{1}{p}}(\sum_{i=1}^{n}b_i^{q})^{\frac{1}{q}} i=1naibi(i=1naip)p1(i=1nbiq)q1

积分形式

p>1

p , q > 1 , 1 p + 1 q = 1 p,q>1,\frac{1}{p}+\frac{1}{q}=1 p,q>1,p1+q1=1时,有
∫ a b ∣ f ( x ) g ( x ) ∣ d x ≤ ( ∫ a b ∣ f ( x ) ∣ p d x ) 1 p ( ∫ a b ∣ g ( x ) ∣ q d x ) 1 q \int_{a}^{b} \left|f(x)g(x) \right| \mathrm{d}x \le (\int_{a}^{b}\left|f(x) \right|^p\mathrm{d}x)^{\frac{1}{p}}(\int_{a}^{b}\left|g(x) \right|^q\mathrm{d}x)^{\frac{1}{q}} abf(x)g(x)dx(abf(x)pdx)p1(abg(x)qdx)q1
积分形式证明:
A = ∣ f ( x ) ∣ ( ∫ a b ∣ f ( x ) ∣ p d x ) 1 p , B = ∣ g ( x ) ∣ ( ∫ a b ∣ g ( x ) ∣ q d x ) 1 q A=\frac{\left|f(x)\right|}{(\int_{a}^{b}\left|f(x) \right|^p\mathrm{d}x)^{\frac{1}{p}} },B=\frac{\left|g(x)\right|}{(\int_{a}^{b}\left|g(x) \right|^q\mathrm{d}x)^{\frac{1}{q}} } A=(abf(x)pdx)p1f(x),B=(abg(x)qdx)q1g(x)
与上面差不多,把求和换成积分

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值