拉普拉斯变换

拉普拉斯变换

定义

设函数 f ( t ) f(t) f(t)是定义在 [ 0 , + ∞ ) \left[0,+\infty \right ) [0,+)上的实值函数,如果对于复参数 s = β + j ω s=\beta + j\omega s=β+jω,积分 F ( s ) = ∫ 0 + ∞ f ( t ) e − s t d t F(s)=\int_{0}^{+\infty}f(t)e^{-st}\mathrm{d}t F(s)=0+f(t)estdt在复平面 s s s的某一区域内收敛,则称 F ( s ) F(s) F(s) f ( t ) f(t) f(t)的拉普拉斯变换,
记为 F ( s ) = L [ f ( t ) ] ; F(s)=\mathfrak{L}\left[f(t) \right ]; F(s)=L[f(t)];相应地,称 f ( t ) f(t) f(t) F ( s ) F(s) F(s)的拉普拉斯逆变换,记为 f ( t ) = L − 1 [ F ( s ) ] f(t)=\mathfrak{L}^{-1}\left[F(s) \right ] f(t)=L1[F(s)]
有时也称 f ( t ) f(t) f(t) F ( s ) F(s) F(s)分别为像原函数和像函数

拉普拉斯变换存在定理

设函数 f ( t ) f(t) f(t)满足:

  1. t ≥ 0 t\ge 0 t0的任何优先区间上分段连续
  2. t → + ∞ t \to +\infty t+时, f ( t ) f(t) f(t)具有有限的增长,即存在常数 M > 0 M>0 M>0 c c c,使得 ∣ f ( t ) ∣ ≤ M e c t ( 0 ≤ t ≤ + ∞ ) \left|f(t) \right| \le M e^{ct}(0\le t \le +\infty) f(t)Mect(0t+)

其中 c c c称为 f ( t ) f(t) f(t)的增长指数,则像函数 F ( s ) F(s) F(s)在半平面 R e   s > c Re\ s >c Re s>c上一定存在,且是解析的。

性质

线性性质

α , β \alpha,\beta α,β为常数,且有 L [ f ( t ) ] = F ( s ) , L [ g ( t ) ] = G ( s ) \mathfrak{L}\left[f(t) \right ]=F(s),\mathfrak{L}\left[g(t) \right ]=G(s) L[f(t)]=F(s),L[g(t)]=G(s),则有
L [ α f ( t ) + β g ( t ) ] = α F ( s ) + β G ( s ) \mathfrak{L}\left[\alpha f(t) +\beta g(t)\right ]=\alpha F(s)+\beta G(s) L[αf(t)+βg(t)]=αF(s)+βG(s)
L − 1 [ α F ( s ) + β G ( s ) ] = α f ( t ) + β g ( t ) \mathfrak{L}^{-1}\left[\alpha F(s) +\beta G(s)\right ]=\alpha f(t)+\beta g(t) L1[αF(s)+βG(s)]=αf(t)+βg(t)

相似性质

L [ f ( t ) ] = F ( s ) \mathfrak{L}\left[f(t) \right ]=F(s) L[f(t)]=F(s),则对于任一常数 α > 0 \alpha>0 α>0,有
L [ f ( a t ) ] = 1 a = 1 a F ( s a ) \mathfrak{L}\left[f(at) \right ]=\frac{1}{a}=\frac{1}{a}F(\frac{s}{a}) L[f(at)]=a1=a1F(as)
证明:
L [ f ( a t ) ] = ∫ 0 + ∞ f ( a t ) e − s t d t = 1 a ∫ 0 + ∞ f ( u ) e − s u a d u = 1 a ∫ 0 + ∞ f ( u ) e − s a u d u = 1 a F ( s a ) \begin{aligned} &\quad \mathfrak{L} \left[f(at) \right ] \\ &=\int_{0}^{+\infty} f(at)e^{-st}\mathrm{d}t \\ &=\frac{1}{a}\int_{0}^{+\infty} f(u) e^{-s\frac{u}{a}}\mathrm{d}u \\ &=\frac{1}{a}\int_{0}^{+\infty} f(u) e^{-\frac{s}{a}u}\mathrm{d}u \\ &=\frac{1}{a} F(\frac{s}{a}) \end{aligned} L[f(at)]=0+f(at)estdt=a10+f(u)esaudu=a10+f(u)easudu=a1F(as)

延迟性质

L [ f ( t ) ] = F ( s ) \mathfrak{L}\left[f(t) \right ]=F(s) L[f(t)]=F(s),当 t < 0 t<0 t<0时, f ( t ) = 0 f(t)=0 f(t)=0则对于任一非负实数 τ \tau τ
L [ f ( t − τ ) ] = e − s τ F ( s ) \mathfrak{L}\left[f(t-\tau) \right ]=e^{-s\tau} F(s) L[f(tτ)]=esτF(s)
证明:
L [ f ( t − τ ) ] = ∫ 0 + ∞ f ( t − τ ) e − s t d t = ∫ 0 + ∞ f ( u ) e − s ( u + τ ) d u = e − s τ ∫ 0 + ∞ f ( u ) e − s u d u = e − s τ F ( s ) \begin{aligned} &\quad \mathfrak{L}\left[f(t-\tau) \right ] \\ &=\int_{0}^{+\infty} f(t-\tau) e^{-st} \mathrm{d}t \\ &=\int_{0}^{+\infty}f(u)e^{-s(u+\tau)} \mathrm{d}u \\ &=e^{-s\tau} \int_{0}^{+\infty}f(u)e^{-su} \mathrm{d}u \\ &=e^{-s\tau} F(s) \end{aligned} L[f(tτ)]=0+f(tτ)estdt=0+f(u)es(u+τ)du=esτ0+f(u)esudu=esτF(s)
所以其实也等价于
L [ f ( t − τ ) u ( t − τ ) ] = e − s τ F ( s ) \mathfrak{L}\left[f(t-\tau) u(t-\tau)\right ]=e^{-s\tau} F(s) L[f(tτ)u(tτ)]=esτF(s), u u u是单位阶跃函数
L − 1 [ e − s τ F ( s ) ] = f ( t − τ ) u ( t − τ ) \mathfrak{L}^{-1}\left[e^{-s\tau} F(s) \right ]=f(t-\tau) u(t-\tau) L1[esτF(s)]=f(tτ)u(tτ)

位移性质

L [ f ( t ) ] = F ( s ) \mathfrak{L}\left[f(t) \right ]=F(s) L[f(t)]=F(s),则有 L [ e a t f ( t ) ] = F ( s − a ) ( a ∈ C ) \mathfrak{L}\left[e^{at} f(t)\right ]=F(s-a) (a\in C) L[eatf(t)]=F(sa)(aC)
证明:
L [ e a t f ( t ) ] = ∫ 0 + ∞ e a t f ( t ) e − s t d t = ∫ 0 + ∞ f ( t ) e − ( s − a ) t d t = F ( s − a ) \begin{aligned} &\quad \mathfrak{L}\left[e^{at}f(t) \right ] \\ &=\int_{0}^{+\infty} e^{at} f(t)e^{-st}\mathrm{d}t \\ &=\int_{0}^{+\infty} f(t)e^{-(s-a)t}\mathrm{d}t \\ &=F(s-a) \end{aligned} L[eatf(t)]=0+eatf(t)estdt=0+f(t)e(sa)tdt=F(sa)

周期函数的像函数

f ( t ) f(t) f(t) [ 0 , + ∞ ) \left[0,+\infty \right ) [0,+)内以 T T T为周期的函数,且 f ( t ) f(t) f(t)在一个周期内逐段光滑,则
L [ f ( t ) ] = 1 1 − e − s T ∫ 0 T f ( t ) e − s t d t \mathfrak{L}\left[f(t) \right ]=\frac{1}{1-e^{-sT}}\int_{0}^{T}f(t)e^{-st}\mathrm{d}t L[f(t)]=1esT10Tf(t)estdt
证明:
L [ f ( t ) ] = ∫ 0 + ∞ f ( t ) e − s t d t = ∫ 0 T f ( t ) e − s t d t + ∫ T + ∞ f ( t ) e − s t d t = ∫ 0 T f ( t ) e − s t d t + ∫ 0 + ∞ f ( u + T ) e − s ( u + T ) d u = ∫ 0 T f ( t ) e − s t d t + e − s T ∫ 0 + ∞ f ( u ) e − s u d u = ∫ 0 T f ( t ) e − s t d t + e − s T L [ f ( t ) ] = 1 1 − e − s T ∫ 0 T f ( t ) e − s t d t \begin{aligned} &\quad \mathfrak{L}\left[f(t) \right ] \\ &=\int_{0}^{+\infty} f(t)e^{-st}\mathrm{d}t \\ &=\int_{0}^{T}f(t)e^{-st}\mathrm{d}t +\int_{T}^{+\infty}f(t)e^{-st}\mathrm{d}t \\ &=\int_{0}^{T}f(t)e^{-st}\mathrm{d}t+\int_{0}^{+\infty}f(u+T)e^{-s(u+T)}\mathrm{d}u \\ &=\int_{0}^{T}f(t)e^{-st}\mathrm{d}t+e^{-sT}\int_{0}^{+\infty}f(u)e^{-su}\mathrm{d}u \\ &=\int_{0}^{T}f(t)e^{-st}\mathrm{d}t+e^{-sT}\mathfrak{L}\left[f(t) \right ] \\ &=\frac{1}{1-e^{-sT}}\int_{0}^{T}f(t)e^{-st}\mathrm{d}t \end{aligned} L[f(t)]=0+f(t)estdt=0Tf(t)estdt+T+f(t)estdt=0Tf(t)estdt+0+f(u+T)es(u+T)du=0Tf(t)estdt+esT0+f(u)esudu=0Tf(t)estdt+esTL[f(t)]=1esT10Tf(t)estdt

微分性质

导数的像函数

L [ f ( t ) ] = F ( s ) \mathfrak{L}\left[f(t) \right ]=F(s) L[f(t)]=F(s),则有
L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) \mathfrak{L}\left[f^{(n)}(t) \right ]=s^n F(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots -f^{(n-1)}(0) L[f(n)(t)]=snF(s)sn1f(0)sn2f(0)f(n1)(0)
其中 f ( k ) ( 0 ) = lim ⁡ t → 0 + f ( k ) ( t ) f^{(k)}(0)=\lim\limits_{t\to 0^{+}}f^{(k)}(t) f(k)(0)=t0+limf(k)(t)
证明:
L [ f ( n ) ( t ) ] = ∫ 0 + ∞ f ( n ) ( t ) e − s t d t = e − s t f ( n − 1 ) ( t ) ∣ 0 + ∞ − ∫ 0 + ∞ ( − s ) e − s t f ( n − 1 ) ( t ) d t = 0 − f ( n − 1 ) ( 0 ) + s ∫ 0 + ∞ e − s t f ( n − 1 ) ( t ) d t = − f ( n − 1 ) ( 0 ) − s f ( n − 2 ) ( 0 ) + s 2 ∫ 0 + ∞ e − s t f ( n − 2 ) ( t ) d t = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) \begin{aligned} &\quad \mathfrak{L}\left[f^{(n)}(t) \right ] \\ &=\int_{0}^{+\infty} f^{(n)}(t)e^{-st}\mathrm{d}t \\ &=\left. e^{-st}f^{(n-1)}(t) \right|_{0}^{+\infty}-\int_{0}^{+\infty} (-s)e^{-st} f^{(n-1)}(t)\mathrm{d}t \\ &=0-f^{(n-1)}(0)+s\int_{0}^{+\infty} e^{-st} f^{(n-1)}(t)\mathrm{d}t \\ &=-f^{(n-1)}(0)-sf^{(n-2)}(0)+s^{2}\int_{0}^{+\infty} e^{-st} f^{(n-2)}(t)\mathrm{d}t\\ &=s^n F(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots -f^{(n-1)}(0) \end{aligned} L[f(n)(t)]=0+f(n)(t)estdt=estf(n1)(t)0+0+(s)estf(n1)(t)dt=0f(n1)(0)+s0+estf(n1)(t)dt=f(n1)(0)sf(n2)(0)+s20+estf(n2)(t)dt=snF(s)sn1f(0)sn2f(0)f(n1)(0)

像函数的导数

L [ f ( t ) ] = F ( s ) \mathfrak{L}\left[f(t) \right ]=F(s) L[f(t)]=F(s),则有
F ( n ) ( s ) = ( − 1 ) n L [ t n f ( t ) ] F^{(n)}(s)=(-1)^{n}\mathfrak{L}\left[t^{n}f(t) \right ] F(n)(s)=(1)nL[tnf(t)]
证明:
F ′ ( s ) = d d s ∫ 0 + ∞ f ( t ) e − s t d t = ∫ 0 + ∞ ∂ ∂ s f ( t ) e − s t d t = ∫ 0 + ∞ f ( t ) e − s t ( − t ) d t = ( − 1 ) ∫ 0 + ∞ t f ( t ) e − s t d t F'(s) \\=\frac{\mathrm{d}}{\mathrm{d}s}\int_{0}^{+\infty} f(t)e^{-st}\mathrm{d}t \\=\int_{0}^{+\infty} \frac{\partial }{\partial s}f(t)e^{-st}\mathrm{d}t \\=\int_{0}^{+\infty}f(t)e^{-st}(-t)\mathrm{d}t \\=(-1)\int_{0}^{+\infty}t f(t)e^{-st}\mathrm{d}t F(s)=dsd0+f(t)estdt=0+sf(t)estdt=0+f(t)est(t)dt=(1)0+tf(t)estdt
F ( n ) ( s ) = ( − 1 ) n L [ t n f ( t ) ] F^{(n)}(s)=(-1)^{n}\mathfrak{L}\left[t^{n}f(t) \right ] F(n)(s)=(1)nL[tnf(t)]

积分性质

积分的像函数

L [ f ( t ) ] = F ( s ) \mathfrak{L}\left[f(t) \right ]=F(s) L[f(t)]=F(s),则有
L [ ∫ 0 t ∫ 0 t ⋯ ∫ 0 t f ( t ) d t ] = 1 s n F ( s ) \mathfrak{L}\left[\int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t}f(t)\mathrm{d}t \right ]=\frac{1}{s^{n}}F(s) L[0t0t0tf(t)dt]=sn1F(s)
证明:
g ( t ) = ∫ 0 t f ( t ) d t , g ′ ( 0 ) = 0 g(t)=\int_{0}^{t}f(t)\mathrm{d}t,g'(0)=0 g(t)=0tf(t)dt,g(0)=0
L [ g ′ ( t ) ] = s L [ g ( t ) ] − g ( 0 ) \mathfrak{L}\left[g'(t) \right ]=s\mathfrak{L}\left[g(t) \right ]-g(0) L[g(t)]=sL[g(t)]g(0)
L [ ∫ 0 t f ( t ) d t ] = 1 s F ( s ) \mathfrak{L}\left[\int_{0}^{t}f(t)\mathrm{d}t \right ]=\frac{1}{s}F(s) L[0tf(t)dt]=s1F(s)
L [ ∫ 0 t ∫ 0 t ⋯ ∫ 0 t f ( t ) d t ] = 1 s n F ( s ) \mathfrak{L}\left[\int_{0}^{t} \int_{0}^{t} \cdots \int_{0}^{t}f(t)\mathrm{d}t \right ]=\frac{1}{s^{n}}F(s) L[0t0t0tf(t)dt]=sn1F(s)

像函数的积分

L [ f ( t ) ] = F ( s ) \mathfrak{L}\left[f(t) \right ]=F(s) L[f(t)]=F(s),则有
∫ s + ∞ d s ∫ s + ∞ d s ⋯ ∫ s + ∞ F ( s ) d s = L [ f ( t ) t n ] \int_{s}^{+\infty}\mathrm{d}s \int_{s}^{+\infty}\mathrm{d}s \cdots \int_{s}^{+\infty} F(s)\mathrm{d}s=\mathfrak{L}\left[\frac{f(t)}{t^{n}} \right ] s+dss+dss+F(s)ds=L[tnf(t)]
证明:
∫ s + ∞ F ( s ) d s = ∫ s + ∞ [ ∫ 0 + ∞ f ( t ) e − s t d t ] d s = ∫ 0 + ∞ f ( t ) [ ∫ s + ∞ e − s t d s ] d t = ∫ 0 + ∞ f ( t ) e − s t − t ∣ s + ∞ d t = ∫ 0 + ∞ f ( t ) t e − s t d t = L [ f ( t ) t ] \begin{aligned} &\quad \int_{s}^{+\infty} F(s)\mathrm{d}s \\ &= \int_{s}^{+\infty} \left[\int_{0}^{+\infty} f(t)e^{-st} \mathrm{d}t \right ] \mathrm{d}s \\ &= \int_{0}^{+\infty}f(t) \left[\int_{s}^{+\infty} e^{-st} \mathrm{d}s \right ] \mathrm{d}t \\ &=\int_{0}^{+\infty}f(t)\left. \frac{e^{-st}}{-t}\right|_{s}^{+\infty} \mathrm{d}t \\ &=\int_{0}^{+\infty}\frac{f(t)}{t}e^{-st}\mathrm{d}t \\ &=\mathfrak{L}\left[\frac{f(t)}{t} \right ] \end{aligned} s+F(s)ds=s+[0+f(t)estdt]ds=0+f(t)[s+estds]dt=0+f(t)tests+dt=0+tf(t)estdt=L[tf(t)]
∫ s + ∞ d s ∫ s + ∞ d s ⋯ ∫ s + ∞ F ( s ) d s = L [ f ( t ) t n ] \int_{s}^{+\infty}\mathrm{d}s \int_{s}^{+\infty}\mathrm{d}s \cdots \int_{s}^{+\infty} F(s)\mathrm{d}s=\mathfrak{L}\left[\frac{f(t)}{t^{n}} \right ] s+dss+dss+F(s)ds=L[tnf(t)]

卷积与卷积定理

卷积

如果 f 1 ( t ) , f 2 ( t ) f_1(t),f_2(t) f1(t),f2(t)满足当 t < 0 t<0 t<0 , f 1 ( t ) = f 2 ( t ) = 0 , ,f_1(t)=f_2(t)=0, ,f1(t)=f2(t)=0,则有
f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ = ∫ 0 + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ = ∫ 0 t f 1 ( τ ) f 2 ( t − τ ) d τ ( t ≥ 0 ) \begin{aligned} &\quad f_1(t)\ast f_2(t) \\ &=\int_{-\infty}^{+\infty}f_1(\tau)f_2(t-\tau)\mathrm{d}\tau \\ &= \int_{0}^{+\infty} f_1(\tau)f_2(t-\tau)\mathrm{d}\tau \\ &= \int_{0}^{t} f_1(\tau)f_2(t-\tau)\mathrm{d}\tau(t\ge 0) \end{aligned} f1(t)f2(t)=+f1(τ)f2(tτ)dτ=0+f1(τ)f2(tτ)dτ=0tf1(τ)f2(tτ)dτ(t0)
依然满足交换律,分配律,结合律

卷积定理

L [ f 1 ( t ) ] = F 1 ( s ) , L [ f 2 ( t ) ] = F 2 ( s ) \mathfrak{L}\left[f_1(t) \right ]=F_1(s),\mathfrak{L}\left[f_2(t) \right ]=F_2(s) L[f1(t)]=F1(s),L[f2(t)]=F2(s),则有
L [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( s ) F 2 ( s ) \mathfrak{L}\left[f_1(t)\ast f_2(t) \right ]=F_1(s)F_2(s) L[f1(t)f2(t)]=F1(s)F2(s)
证明:
L [ f 1 ( t ) ∗ f 2 ( t ) ] = ∫ 0 + ∞ [ ∫ 0 t f 1 ( τ ) f 2 ( t − τ ) d τ ] e − s t d t = ∫ 0 + ∞ [ ∫ τ + ∞ f 1 ( τ ) f 2 ( t − τ ) d t ] e − s t d τ = ∫ 0 + ∞ f 1 ( τ ) [ ∫ τ + ∞ f 2 ( t − τ ) e − s t d t ] d τ = ∫ 0 + ∞ f 1 ( τ ) [ ∫ τ + ∞ f 2 ( t − τ ) e − s t d t ] d τ = ∫ 0 + ∞ f 1 ( τ ) [ ∫ τ + ∞ f 2 ( u ) e − s ( u + τ ) d u ] d τ = ∫ 0 + ∞ f 1 ( τ ) e − s τ d τ ∫ τ + ∞ f 2 ( u ) e − s u d u = F 1 ( s ) F 2 ( s ) \begin{aligned} &\quad \mathfrak{L}\left[f_1(t)\ast f_2(t) \right ] \\ &=\int_{0}^{+\infty}\left[\int_{0}^{t}f_1(\tau)f_2(t-\tau) \mathrm{d}\tau \right ]e^{-st}\mathrm{d}t \\ &=\int_{0}^{+\infty}\left[\int_{\tau}^{+\infty}f_1(\tau)f_2(t-\tau) \mathrm{d}t \right ]e^{-st}\mathrm{d}\tau \\ &=\int_{0}^{+\infty}f_1(\tau)\left[\int_{\tau}^{+\infty}f_2(t-\tau) e^{-st}\mathrm{d}t \right ]\mathrm{d}\tau \\ &=\int_{0}^{+\infty}f_1(\tau)\left[\int_{\tau}^{+\infty}f_2(t-\tau) e^{-st}\mathrm{d}t \right ]\mathrm{d}\tau \\ &=\int_{0}^{+\infty}f_1(\tau)\left[\int_{\tau}^{+\infty}f_2(u) e^{-s(u+\tau)}\mathrm{d}u \right ]\mathrm{d}\tau \\ &=\int_{0}^{+\infty}f_1(\tau)e^{-s\tau}\mathrm{d}\tau \int_{\tau}^{+\infty}f_2(u) e^{-su}\mathrm{d}u \\ &=F_1(s)F_2(s) \end{aligned} L[f1(t)f2(t)]=0+[0tf1(τ)f2(tτ)dτ]estdt=0+[τ+f1(τ)f2(tτ)dt]estdτ=0+f1(τ)[τ+f2(tτ)estdt]dτ=0+f1(τ)[τ+f2(tτ)estdt]dτ=0+f1(τ)[τ+f2(u)es(u+τ)du]dτ=0+f1(τ)esτdττ+f2(u)esudu=F1(s)F2(s)

拉普拉斯逆变换

由拉普拉斯变换与傅立叶变换的关系可知,函数 f ( t ) f(t) f(t)的拉普拉斯变换
F ( s ) = F ( β + j ω ) = F [ f ( t ) u ( t ) e − β t ] F(s)=F(\beta +j\omega)=\mathfrak{F}\left[f(t)u(t)e^{-\beta t} \right ] F(s)=F(β+jω)=F[f(t)u(t)eβt]
F ( β + j ω ) = ∫ − ∞ + ∞ f ( t ) u ( t ) e − β t e − j ω t d t F(\beta + j\omega)=\int_{-\infty}^{+\infty}f(t)u(t)e^{-\beta t}e^{-j\omega t}\mathrm{d}t F(β+jω)=+f(t)u(t)eβtejωtdt
如果 f ( t ) u ( t ) e − β t f(t)u(t)e^{-\beta t} f(t)u(t)eβt满足傅里叶积分定理的条件,则按傅立叶逆变换
f ( t ) u ( t ) e − β t = 1 2 π ∫ − ∞ + ∞ F ( β + j ω ) e j ω t d ω f(t)u(t)e^{-\beta t} =\frac{1}{2\pi}\int_{-\infty}^{+\infty} F(\beta +j\omega)e^{j\omega t}\mathrm{d}\omega f(t)u(t)eβt=2π1+F(β+jω)ejωtdω
事实上,这里仅要求 β \beta β F ( s ) F(s) F(s)的存在域内即可,
所以两边同乘 e β t e^{\beta t} eβt,并令 s = β + j ω s=\beta +j\omega s=β+jω
f ( t ) u ( t ) = 1 2 π j ∫ β − j ∞ β + j ∞ F ( s ) e s t d s f(t)u(t)=\frac{1}{2\pi j}\int_{\beta -j\infty}^{\beta+j\infty} F(s)e^{st}\mathrm{d}s f(t)u(t)=2πj1βjβ+jF(s)estds
因此
f ( t ) = 1 2 π j ∫ β − j ∞ β + j ∞ F ( s ) e s t d s ( t > 0 ) f(t)=\frac{1}{2\pi j}\int_{\beta -j\infty}^{\beta+j\infty} F(s)e^{st}\mathrm{d}s(t>0) f(t)=2πj1βjβ+jF(s)estds(t>0)
这个被称为反演积分公式,其中右端的积分称为反演公式,其积分路径是 s s s平面上的一条直线 R e   s = β Re\ s=\beta Re s=β,该直线处于 F ( s ) F(s) F(s)的存在域中。由于 F ( s ) F(s) F(s)存在域内解析,因此在此直线的右边不包含 F ( s ) F(s) F(s)的奇点。并且可以看出来 t < 0 t<0 t<0时为 0 0 0

计算方式

留数

F ( s ) F(s) F(s)除在板平面 R e   s ≤ c Re\ s\le c Re sc内有限个孤立奇点 s 1 , s 2 , ⋯   , s n s_1,s_2,\cdots , s_n s1,s2,,sn外是解析的,且当 s → ∞ s\to \infty s时, F ( s ) → 0 F(s)\to 0 F(s)0则有
1 2 π j ∫ β − j ∞ β + j ∞ F ( s ) e s t d s = ∑ k = 1 n R e s [ F ( s ) e s t , s k ] \frac{1}{2\pi j}\int_{\beta -j\infty}^{\beta +j\infty}F(s)e^{st}\mathrm{d}s=\sum_{k=1}^{n}Res\left[F(s)e^{st},s_k \right ] 2πj1βjβ+jF(s)estds=k=1nRes[F(s)est,sk]

f ( t ) = ∑ k = 1 n R e s [ F ( s ) e s t , s k ] ( t > 0 ) f(t)=\sum_{k=1}^{n}Res\left[F(s)e^{st},s_k \right ](t>0) f(t)=k=1nRes[F(s)est,sk](t>0)
证明:
在这里插入图片描述
曲线 C = L + C R , L C=L+C_R,L C=L+CR,L在平面 R e   s > c Re\ s>c Re s>c内, C R C_R CR是半径为 R R R的半圆弧,当 R R R充分大时,可使 s k ( k = 1 , 2 , ⋯   , n ) s_k(k=1,2,\cdots ,n) sk(k=1,2,,n)都在 C C C内.由于 F ( s ) e s t F(s)e^{st} F(s)est除了孤立奇点 s k ( k = 1 , 2 , ⋯   , n ) s_k(k=1,2,\cdots ,n) sk(k=1,2,,n)外是解析的。
故由留数定理有
∮ C F ( s ) e s t d s = 2 π j ∑ k = 1 n R e s [ F ( s ) e s t , s k ] 1 2 π j [ ∫ β − j R β + j R F ( s ) e s t d s + ∫ C R F ( s ) e s t d s ] = ∑ k = 1 n R e s [ F ( s ) e s t , s k ] \begin{aligned} \oint _C F(s)e^{st}\mathrm{d}s&=2\pi j \sum_{k=1}^{n}Res\left[F(s)e^{st},s_k \right ]\\ \frac{1}{2\pi j}\left[\int_{\beta -jR}^{\beta +jR}F(s)e^{st}\mathrm{d}s+\int_{C_R}F(s)e^{st}\mathrm{d}s \right ]&=\sum_{k=1}^{n}Res\left[F(s)e^{st},s_k \right ] \end{aligned} CF(s)estds2πj1[βjRβ+jRF(s)estds+CRF(s)estds]=2πjk=1nRes[F(s)est,sk]=k=1nRes[F(s)est,sk]
由若尔当引理,当t>0时由
lim ⁡ R → + ∞ ∫ C R F ( s ) e s t d s = 0 \lim\limits_{R\to +\infty} \int_{C_R}F(s)e^{st}\mathrm{d}s=0 R+limCRF(s)estds=0
因此
1 2 π j ∫ β − j ∞ β + j ∞ F ( s ) e s t d s = ∑ k = 1 n R e s [ F ( s ) e s t , s k ] \frac{1}{2\pi j}\int_{\beta -j\infty}^{\beta +j\infty}F(s)e^{st}\mathrm{d}s=\sum_{k=1}^{n}Res\left[F(s)e^{st},s_k \right ] 2πj1βjβ+jF(s)estds=k=1nRes[F(s)est,sk]

卷积定理

F ( s ) = F 1 ( s ) F 2 ( s ) , L [ f 1 ( t ) ] = F 1 ( s ) . L [ f 2 ( t ) ] = F 2 ( s ) F(s)=F_1(s)F_2(s),\mathfrak{L}\left[f_1(t) \right ]=F_1(s).\mathfrak{L}\left[f_2(t) \right ]=F_2(s) F(s)=F1(s)F2(s),L[f1(t)]=F1(s).L[f2(t)]=F2(s),
f ( t ) = L − 1 [ F ( s ) ] = f 1 ( t ) ∗ f 2 ( t ) f(t)=\mathfrak{L}^{-1}\left[F(s) \right ]=f_1(t)\ast f_2(t) f(t)=L1[F(s)]=f1(t)f2(t)

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值