证明
设复数 λ \lambda λ为对称矩阵 A A A的特征值, 复向量 x x x为对应的特征向量, 即 A x = λ x , x ≠ 0 Ax=\lambda x, x \neq 0 Ax=λx,x=0.
设 λ ˉ \bar{\lambda} λˉ是 λ \lambda λ的共轭复数, x ˉ \bar{x} xˉ表示 x x x的共轭复向量, 而 A A A为实矩阵, 有 A = A ˉ A=\bar{A} A=Aˉ,故 A x ˉ = A ˉ x ˉ = ( A x ˉ ) = ( λ x ˉ ) = λ ˉ x ˉ A\bar{x}=\bar{A}\bar{x}=(\bar{Ax})=(\bar{\lambda x})=\bar{\lambda}\bar{x} Axˉ