实对称矩阵A^T=A的特征值是实数

证明

设复数 λ \lambda λ为对称矩阵 A A A的特征值, 复向量 x x x为对应的特征向量, 即 A x = λ x , x ≠ 0 Ax=\lambda x, x \neq 0 Ax=λx,x=0.

λ ˉ \bar{\lambda} λˉ λ \lambda λ的共轭复数, x ˉ \bar{x} xˉ表示 x x x的共轭复向量, 而 A A A为实矩阵, 有 A = A ˉ A=\bar{A} A=Aˉ,故 A x ˉ = A ˉ x ˉ = ( A x ˉ ) = ( λ x ˉ ) = λ ˉ x ˉ A\bar{x}=\bar{A}\bar{x}=(\bar{Ax})=(\bar{\lambda x})=\bar{\lambda}\bar{x} Axˉ=Aˉxˉ=(Axˉ)=(λxˉ)=λˉxˉ, 于是
x ˉ A x = x ˉ T ( A x ) = x ˉ T λ x = λ x ˉ T x (1) \bar{x}Ax=\bar{x}^T(Ax)=\bar{x}^T\lambda x=\lambda\bar{x}^Tx \tag1 xˉAx=xˉT(Ax)=xˉTλx=λxˉTx(1)

x ˉ A x = ( x ˉ T A T ) x = ( A x ˉ ) T x = ( λ x ˉ ) T x = λ x ˉ T x (2) \bar{x}Ax=(\bar{x}^TA^T)x=(A\bar{x})^Tx=(\lambda \bar{x})^T x=\lambda\bar{x}^Tx \tag2 xˉAx=(xˉTAT)x=(Axˉ)Tx=(λxˉ)Tx=λxˉTx(2)

由 ( 1 ) − ( 2 ) 得 到 , ( λ − λ ˉ ) x ˉ T x = 0 由(1)-(2)得到, \qquad\qquad\qquad\qquad (\lambda - \bar\lambda)\bar{x}^Tx=0 (1)(2),(λλˉ)xˉTx=0

x ≠ 0 x\neq0 x=0,所以:
x ˉ T x = ∑ i = 1 n x i ˉ x i = ∑ i = 1 n ∣ x i ∣ 2 ≠ 0 \bar{x}^Tx=\sum_{i=1}^{n}\bar{x_{i}}x_{i}=\sum_{i=1}^{n}|x_{i}|^2\neq0 xˉTx=i=1nxiˉxi=i=1nxi2=0
λ − λ ˉ = 0 \lambda - \bar\lambda=0 λλˉ=0, 即 λ = λ ˉ \lambda=\bar\lambda λ=λˉ,这说明 λ \lambda λ是实数.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值