实对称矩阵A^T=A的特征值是实数

证明

设复数 λ \lambda λ为对称矩阵 A A A的特征值, 复向量 x x x为对应的特征向量, 即 A x = λ x , x ≠ 0 Ax=\lambda x, x \neq 0 Ax=λx,x=0.

λ ˉ \bar{\lambda} λˉ λ \lambda λ的共轭复数, x ˉ \bar{x} xˉ表示 x x x的共轭复向量, 而 A A A为实矩阵, 有 A = A ˉ A=\bar{A} A=Aˉ,故 A x ˉ = A ˉ x ˉ = ( A x ˉ ) = ( λ x ˉ ) = λ ˉ x ˉ A\bar{x}=\bar{A}\bar{x}=(\bar{Ax})=(\bar{\lambda x})=\bar{\lambda}\bar{x} Axˉ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值