奇异值分解与极分解

酉矩阵

U H U = U U H = I U^HU=UU^H=I UHU=UUH=I,则称 U U U为酉矩阵
( H H H表示共轭转置,先取共轭复数,再转置,或者先转置再取共轭复数)

其实相当于正交矩阵的复数版

命题1

A ∈ C m × n A\in\mathbb{C}^{m\times n} ACm×n,则有
(1)
A H A A^H A AHA A A H AA^H% AAH的特征值均为非负实数
(2)
A H A^H AH A A H AA^H AAH的非零特征值相同

证明:
(1)
0 ≠ x ∈ C n 0\neq x \in \mathbb{C}^n 0=xCn为矩阵 A H A A^HA AHA的特征值 λ \lambda λ所对应的 特征向量,
( A H A ) H = A H A (A^H A)^H=A^HA (AHA)H=AHA,所以 A H A A^HA AHA是埃尔米特矩阵
x H A H A x = ( A x ) H ( A x ) ≥ 0 x^H A^H Ax=(Ax)^H(Ax)\ge 0 xHAHAx=(Ax)H(Ax)0
A H A A^HA AHA是半正定矩阵,所以 λ ≥ 0 \lambda \ge 0 λ0
(2)
A H A A^H A AHA的特征值
λ 1 ≥ λ 2 ≥ ⋯ λ r > λ r + 1 = ⋯ = λ n = 0 \lambda_1\ge \lambda_2 \ge \cdots \lambda_r>\lambda_{r+1}=\cdots =\lambda_n=0 λ1λ2λr>λr+1==λn=0
A A H AA^H AAH的特征值
μ 1 ≥ μ 2 ≥ ⋯ ≥ μ s > μ s + 1 = ⋯ = μ m = 0 \mu_1\ge \mu_2\ge \cdots \ge \mu_s >\mu_{s+1}=\cdots =\mu_m=0 μ1μ2μs>μs+1==μm=0
0 ≠ x i ∈ C n ( i = 1 , 2 , ⋯   , r ) 0\neq x_i\in C^n(i=1,2,\cdots, r) 0=xiCn(i=1,2,,r) A H A A^HA AHA的非零特征值 λ i ( i = 1 , 2 , ⋯   , r ) \lambda_i(i=1,2,\cdots,r) λi(i=1,2,,r)所对应的特征向量,则
A H A x i = λ i x i ( i = 1 , 2 , ⋯   , r ) A^HAx_i=\lambda_i x_i(i=1,2,\cdots,r) AHAxi=λixi(i=1,2,,r)

( A A H ) ( A x i ) = λ i ( A x i ) ( i = 1 , 2 , ⋯   , r ) (AA^H)(Ax_i)=\lambda_i (Ax_i)(i=1,2,\cdots,r) (AAH)(Axi)=λi(Axi)(i=1,2,,r)
A x i ≠ 0 Ax_i\neq 0 Axi=0,所以 λ i \lambda_i λi也是 A A H AA^H AAH的特征值,同理, A A H AA^H AAH的非零特征值也是 A H A A^HA AHA的非零特征值

接下来证他们代数重复度相同

y 1 , y 2 , ⋯   , y p y_1,y_2,\cdots,y_p y1,y2,,yp A H A A^HA AHA对应于特征值 λ ≠ 0 \lambda\neq 0 λ=0的线性无关的特征向量,由于 A H A A^HA AHA为单纯矩阵(能相似对角化,或者几何重复度=代数重复度),故 p p p λ \lambda λ的代数重复度,显然 A y i ( i = 1 , 2 , ⋯   , r ) Ay_i(i=1,2,\cdots,r) Ayi(i=1,2,,r) A A H AA^H AAH的对应于 λ \lambda λ的特征向量

k = ( k 1 , k 2 , ⋯   , k p ) T k=(k_1,k_2,\cdots,k_p)^T k=(k1,k2,,kp)T
k 1 A y 1 + ⋯ + k p A y p = 0 A ( y 1 , y 2 , ⋯   , y p ) k = 0 A H A ( y 1 , y 2 , ⋯   , y p ) k = 0 λ ( y 1 , y 2 , ⋯   , y p ) k = 0 ( y 1 , y 2 , ⋯   , y p ) k = 0 k = 0 \begin{aligned} k_1 A y_1+\cdots+k_p A y_p&=0\\ A(y_1,y_2,\cdots,y_p)k&=0\\ A^HA(y_1,y_2,\cdots,y_p)k&=0\\ \lambda(y_1,y_2,\cdots,y_p)k&=0\\ (y_1,y_2,\cdots,y_p)k&=0\\ k&=0\\ \end{aligned} k1Ay1++kpAypA(y1,y2,,yp)kAHA(y1,y2,,yp)kλ(y1,y2,,yp)k(y1,y2,,yp)kk=0=0=0=0=0=0
A y 1 , ⋯   , A y p Ay_1,\cdots,Ay_p Ay1,,Ayp线性无关,因而 λ \lambda λ也是 A A H AA^H AAH P P P重非零特征值

奇异值

A ∈ C r m × n A\in \mathbb{C}_r^{m\times n} ACrm×n(秩为 r r r m × n m\times n m×n阶复矩阵),特征值为
λ 1 ≥ λ 2 ≥ ⋯ ≥ λ r > λ r + 1 = ⋯ = λ n = 0 \lambda_1\ge \lambda_2 \ge \cdots \ge \lambda_r >\lambda_{r+1}=\cdots =\lambda_n=0 λ1λ2λr>λr+1==λn=0
则称 σ i = λ i ( i = 1 , 2 , ⋯   , r ) \sigma_i=\sqrt{\lambda_i}(i=1,2,\cdots,r) σi=λi (i=1,2,,r)为矩阵 A A A正奇异值,简称奇异值

酉等价

A , B ∈ C m × n A,B\in \mathbb{C}^{m\times n} A,BCm×n,如果存在 m m m阶酉矩阵 U U U n n n阶酉矩阵 V V V,使得
B = U A V B=UAV B=UAV
则称 A A A B B B酉等价或者酉相抵

定理1

A A A B B B酉等价,则 A A A B B B有相同的奇异值

证明:
因为 B = U A V B=UAV B=UAV
B H B = V H A H U H U A V = V H A H A V B^H B=V^HA^H U^H UAV=V^HA^HAV BHB=VHAHUHUAV=VHAHAV
所以 A H A A^HA AHA B H B B^HB BHB酉相似(相似的复数版),所以他们有相同的特征值
于是 A A A B B B有相同的奇异值

奇异值分解

定义

A ∈ C r m × n A\in C_r^{m\times n} ACrm×n,则存在 m m m阶酉矩阵 U U U n n n阶酉矩阵 V V V,使得
U H A V = ( Δ 0 0 0 ) U^H A V=\begin{pmatrix} \Delta& 0\\ 0&0\\ \end{pmatrix} UHAV=(Δ000)
或者
A = U ( Δ 0 0 0 ) V H A =U\begin{pmatrix} \Delta& 0\\ 0&0\\ \end{pmatrix}V^H A=U(Δ000)VH

其中 Δ = d i a g ( σ 1 , ⋯   , σ r ) \Delta=diag(\sigma_1,\cdots,\sigma_r) Δ=diag(σ1,,σr), λ i \lambda_i λi A A H AA^H AAH的非零特征值,
σ i = λ i ( i = 1 , 2 , ⋯   , r ) \sigma_i=\sqrt{\lambda_i}(i=1,2,\cdots,r) σi=λi (i=1,2,,r),而 σ i \sigma_i σi A A A的全部奇异值

存在性

证明:
A A H AA^H AAH是半正定的,故存在酉矩阵 U U U,使得
U H A A H U = ( Δ Δ H 0 0 0 ) = d i a g ( σ 1 2 , σ 2 2 , ⋯   , σ r 2 , 0 , ⋯   , 0 ) U^HAA^HU= \begin{pmatrix} \Delta \Delta^H & 0\\ 0 & 0\\ \end{pmatrix}=diag(\sigma_1^2,\sigma_2^2,\cdots, \sigma_r^2,0,\cdots,0) UHAAHU=(ΔΔH000)=diag(σ12,σ22,,σr2,0,,0)
U = ( x 1 , ⋯   , x r , x r + 1 , ⋯   , x m ) = ( U 1 , U 2 ) U=(x_1,\cdots,x_r,x_{r+1},\cdots, x_m)=(U_1,U_2) U=(x1,,xr,xr+1,,xm)=(U1,U2),
其中 U 1 = ( x 1 , ⋯   , x r ) , U 2 = ( x r + 1 , ⋯   , x m ) U_1=(x_1,\cdots,x_r),U_2=(x_{r+1},\cdots, x_m) U1=(x1,,xr),U2=(xr+1,,xm)
于是
U H A A H U = ( U 1 , U 2 ) H A A H ( U 1 , U 2 ) = d i a g ( σ 1 2 , σ 2 2 , ⋯   , σ r 2 , 0 , ⋯   , 0 ) U^HAA^HU=(U_1,U_2)^HAA^H(U_1,U_2)=diag(\sigma_1^2,\sigma_2^2,\cdots, \sigma_r^2,0,\cdots,0) UHAAHU=(U1,U2)HAAH(U1,U2)=diag(σ12,σ22,,σr2,0,,0)
比较两边得
U 1 H A A H U 1 = d i a g ( σ 1 2 , σ 2 2 , ⋯   , σ r 2 ) = Δ 2 = Δ Δ H U_1^HAA^HU_1=diag(\sigma_1^2,\sigma_2^2,\cdots, \sigma_r^2)=\Delta^2=\Delta\Delta^H U1HAAHU1=diag(σ12,σ22,,σr2)=Δ2=ΔΔH
U 2 H A A H U 2 = 0 U_2^HAA^HU_2=0 U2HAAHU2=0
U 2 H A A H U 2 = 0 ⇒ ( A H U 2 ) H ( A H U 2 ) = 0 ⇒ A H U 2 = 0 U_2^HAA^HU_2=0 \Rightarrow (A^HU_2)^H(A^HU_2)=0\Rightarrow A^HU_2=0 U2HAAHU2=0(AHU2)H(AHU2)=0AHU2=0
V 1 = A H U 1 ( Δ − 1 ) H V_1=A^H U_1(\Delta^{-1})^H V1=AHU1(Δ1)H
V 1 H V 1 = Δ − 1 U 1 H A A H U 1 ( Δ − 1 ) H = Δ − 1 Δ Δ H ( Δ − 1 ) H = I r \begin{aligned} V_1^H V_1&=\Delta^{-1}U_1^H AA^H U_1(\Delta^{-1})^H\\ &=\Delta^{-1}\Delta\Delta^H(\Delta^{-1})^H\\ &=I_r \end{aligned} V1HV1=Δ1U1HAAHU1(Δ1)H=Δ1ΔΔH(Δ1)H=Ir
V 1 ∈ U n × r V_1\in U^{n\times r} V1Un×r(酉矩阵集合)
V 2 ∈ U n × ( n − r ) V_2\in U^{n\times(n-r)} V2Un×(nr)
V = ( V 1 , V 2 ) V=(V_1,V_2) V=(V1,V2)

V 1 H V 2 = 0 Δ − 1 U 1 H A V 2 = 0 U 1 H A V 2 = 0 \begin{aligned} V_1^HV_2&=0\\ \Delta^{-1}U_1^HAV_2&=0\\ U_1^HAV_2&=0\\ \end{aligned} V1HV2Δ1U1HAV2U1HAV2=0=0=0

U H A V = ( U 1 H U 2 H ) A ( V 1 , V 2 ) = ( U 1 H A V 1 U 1 H A V 2 U 2 H A V 1 U 2 H A V 2 ) = ( U 1 H A A H U 1 ( Δ − 1 ) H 0 0 0 ) = ( Δ Δ H ( Δ − 1 ) H 0 0 0 ) = ( Δ 0 0 0 ) \begin{aligned} U^HAV&=\begin{pmatrix} U_1^H\\ U_2^H\\ \end{pmatrix}A\begin{pmatrix} V_1,V_2\\ \end{pmatrix}\\ &=\begin{pmatrix} U_1^HAV_1&U_1^HAV_2\\ U_2^HAV_1&U_2^HAV_2\\ \end{pmatrix}\\ &=\begin{pmatrix} U_1^HAA^H U_1(\Delta^{-1})^H&0\\ 0&0\\ \end{pmatrix}\\ &=\begin{pmatrix} \Delta\Delta^H(\Delta^{-1})^H&0\\ 0&0\\ \end{pmatrix}\\ &=\begin{pmatrix} \Delta&0\\ 0&0\\ \end{pmatrix} \end{aligned} UHAV=(U1HU2H)A(V1,V2)=(U1HAV1U2HAV1U1HAV2U2HAV2)=(U1HAAHU1(Δ1)H000)=(ΔΔH(Δ1)H000)=(Δ000)
这种分解方式称为 A A A奇异值分解(SVD分解),实际上他表明了 A A A与一个长方对角阵酉等价

求法

A = U ( Δ 0 0 0 ) V H = U Σ V H A =U\begin{pmatrix} \Delta& 0\\ 0&0\\ \end{pmatrix}V^H=U\Sigma V^H A=U(Δ000)VH=UΣVH
根据
A A H = U Σ 2 U H A H A = V Σ 2 V H AA^H=U\Sigma^2 U^H\\ A^HA =V\Sigma^2 V^H AAH=UΣ2UHAHA=VΣ2VH
(1)求出 A A H AA^H AAH或者 A H A A^HA AHA的特征值
(2)找到 A A H AA^H AAH特征值对应的标准正交的特征向量作为 U U U
(3) A H A A^HA AHA的正特征值就是 A A H AA^H AAH正的特征值,剩下的根据维度补0,然后求出对应的标准正交特征向量作为 V V V

(也可以根据 V 1 = A H U 1 ( Δ − 1 ) H V_1=A^HU_1(\Delta^{-1})^H V1=AHU1(Δ1)H求正的特征值对应的特征向量,然后剩下的用正交求出来)

(4)奇异值就是 A A H AA^H AAH正的特征向量开根号
(求特征值的时候,应该用 A A H AA^H AAH A H A A^HA AHA阶数小的来求)

例子

A = ( 1 0 1 0 1 − 1 ) A=\begin{pmatrix} 1&0&1\\ 0&1&-1\\ \end{pmatrix} A=(100111)
解:
(1)
A A H AA^H AAH是2阶的
A H A A^HA AHA是3阶的
所以求 A A H AA^H AAH的特征值

A A H = ( 2 − 1 − 1 2 ) AA^H= \begin{pmatrix} 2&-1\\ -1&2\\ \end{pmatrix} AAH=(2112)
特征值 λ 1 = 1 , λ 2 = 3 \lambda_1=1,\lambda_2=3 λ1=1,λ2=3
(2)
A A H AA^H AAH对应的特征向量
β 1 = 1 2 ( 1 1 ) , β 2 = 1 2 ( 1 − 1 ) \beta_1=\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ 1\\ \end{pmatrix}, \beta_2=\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1\\ \end{pmatrix} β1=2 1(11),β2=2 1(11)
(3)
A H A A^HA AHA正的特征值为 1 , 3 1,3 1,3
因为是 3 3 3阶的,所以另一个特征值是 0 0 0
对应的特征向量是
α 1 = 1 2 ( 1 1 0 ) , α 2 = 1 6 ( 1 − 1 2 ) , α 1 = 1 3 ( 1 − 1 − 1 ) \alpha_1=\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ 1\\ 0\\ \end{pmatrix}, \alpha_2=\frac{1}{\sqrt{6}}\begin{pmatrix} 1\\ -1\\ 2\\ \end{pmatrix}, \alpha_1=\frac{1}{\sqrt{3}}\begin{pmatrix} 1\\ -1\\ -1\\ \end{pmatrix} α1=2 1110,α2=6 1112,α1=3 1111
(4)
奇异值就是 1 , 3 \sqrt{1},\sqrt{3} 1 ,3

A = U D V H = ( 1 2 1 2 1 2 − 1 2 ) ( 1 0 0 0 3 0 ) ( 1 2 1 2 0 1 6 − 1 6 2 6 1 3 − 1 3 − 1 3 ) A=UDV^H=\begin{pmatrix} \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}\\ \end{pmatrix} \begin{pmatrix} 1&0&0\\ 0&\sqrt{3}&0\\ \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0\\ \frac{1}{\sqrt{6}}&-\frac{1}{\sqrt{6}}&\frac{2}{\sqrt{6}}\\ \frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{3}}\\ \end{pmatrix} A=UDVH=(2 12 12 12 1)(1003 00)2 16 13 12 16 13 106 23 1

奇异值性质

σ m a x ( A ) ≥ ∣ λ ∣ ≥ σ m i n \sigma_{max}(A)\ge \left|\lambda\right| \ge \sigma_{min} σmax(A)λσmin
2.
t r ( A H A ) = ∑ i = 1 r σ i 2 tr(A^HA)=\sum_{i=1}^{r} \sigma_i^2 tr(AHA)=i=1rσi2
3.
A A A列满秩 ⇔ \Leftrightarrow 奇异值均非零

极分解

奇异值分解 A = U 1 D V H A=U_1DV^H A=U1DVH

P = U 1 D U 1 H , U = U 1 V H P=U_1DU_1^H,U=U_1V^H P=U1DU1H,U=U1VH

A ∈ C n × n A\in C^{n\times n} ACn×n,则存在酉矩阵 U U U和唯一的半正定矩阵 P P P使得
A = P U A=PU A=PU
这种分解称为极分解,矩阵 P P P U U U分别称为 A A A的埃尔米特因子和酉因子

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值