矩阵论作业13,14,15讲

  • ( A H ) + = ( A + ) H (A^H)^+=(A^+)^H (AH)+=(A+)H
    证明:
    { 1 } 逆 : A H ( A + ) H A H = ( A A + A ) H = A H \{1\}逆:A^H(A^+)^HA^H=(AA^+A)^H=A^H {1}AH(A+)HAH=(AA+A)H=AH
    { 2 } 逆 : ( A + ) H A H ( A + ) H = ( A + A A + ) H = ( A + ) H \{2\}逆:(A^+)^HA^H(A^+)^H=(A^+AA^+)^H=(A^+)^H {2}(A+)HAH(A+)H=(A+AA+)H=(A+)H
    { 3 } 逆 : ( A H ( A + ) H ) H = ( ( A + A ) H ) H = ( A + A ) H = A H ( A + ) H \{3\}逆:(A^H(A^+)^H)^H=((A^+A)^H)^H=(A^+A)^H=A^H(A^+)^H {3}(AH(A+)H)H=((A+A)H)H=(A+A)H=AH(A+)H
    { 4 } 逆 : ( ( A + ) H A H ) H = ( A ( A + ) H ) H = ( A A + ) H = ( A + ) H A H \{4\}逆:((A^+)^HA^H)^H=(A(A^+)^H)^H=(AA^+)^H=(A^+)^HA^H {4}((A+)HAH)H=(A(A+)H)H=(AA+)H=(A+)HAH
  • ( A H A ) + = A + ( A H ) + (A^HA)^+=A^+(A^H)^+ (AHA)+=A+(AH)+
    证明:
    { 1 } 逆 : A H A A + ( A H ) + A H A = A H A A + ( A + ) H A H A = A H A A + ( A A + ) H A = A H A A + ( A A + ) A = A H A \{1\}逆:A^HAA^+(A^H)^+A^HA=A^HAA^+(A^+)^HA^HA=A^HAA^+(AA^+)^HA=A^HAA^+(AA^+)A=A^HA {1}AHAA+(AH)+AHA=AHAA+(A+)HAHA=AHAA+(AA+)HA=AHAA+(AA+)A=AHA
    后面证明省略啦
    在这里插入图片描述
    在这里插入图片描述
  1. H 3 H = H H H   H ( 前 三 个 可 运 用 { 1 , 2 } 逆 性 质 ) = H 2 , H^3H=HHH\ H(前三个可运用\{1,2\}逆性质)=H^2, H3H=HHH H({1,2})=H2,认真看就能看出来
    在这里插入图片描述
    证明难点:
    证明(1):
    P 2 = ( P 1 + P 2 ) 2 = P 1 2 + P 1 P 2 + P 2 P 1 + P 2 2 = P 1 + P 1 P 2 + P 2 P 1 + P 2 P^2=(P_1+P_2)^2=P_1^2+P_1P_2+P_2P_1+P_2^2=P_1+P_1P_2+P_2P_1+P_2 P2=(P1+P2)2=P12+P1P2+P2P1+P22=P1+P1P2+P2P1+P2,则 P 1 P 2 + P 2 P 1 = 0 P_1P_2+P_2P_1=0 P1P2+P2P1=0
    P 1 P 2 + P 1 P 2 P 1 = 0 P_1P_2+P_1P_2P_1=0 P1P2+P1P2P1=0
    P 1 P 2 P 1 + P 2 P 1 = 0 P_1P_2P_1+P_2P_1=0 P1P2P1+P2P1=0
    两式相减可得: P 1 P 2 − P 2 P 1 = 0 P_1P_2-P_2P_1=0 P1P2P2P1=0,和 P 1 P 2 + P 2 P 1 = 0 P_1P_2+P_2P_1=0 P1P2+P2P1=0联立可得: P 1 P 2 = P 2 P 1 = 0 P_1P_2=P_2P_1=0 P1P2=P2P1=0
    后面的证明方法类似
    在这里插入图片描述
191220第二次做

再次做的时候,我不禁想问自己,你第一次在干啥???还好意思放上面的表情包,脸呢???

十三讲作业

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第十四讲

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

十五讲作业

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
MOOC是指大规模在线开放课程(Massive Open Online Courses)的缩写,它以利用互联网技术,将优质的教育资源和内容以开放的方式提供给学生。MOOC的矩阵论课程包括测验和作业,而授课教师是张宏伟。 矩阵论是线性代数的重要分支,广泛应用于数学、计算机科学、物理学等领域。通过学习矩阵论,我们可以掌握矩阵的基本概念、性质和运算规则,深入理解线性方程组、特征值与特征向量、向量空间等概念。 MOOC的矩阵论课程测验和作业是为了帮助学生巩固所学的知识并检验对矩阵论的理解程度。测验一般包括选择题、填空题和简答题等形式,通过回答问题来验证学生对于矩阵论的理论和应用能力。作业一般是实际问题的解决,学生需要应用矩阵论的知识解决实际问题,并提交解答。 张宏伟是MOOC矩阵论课程的授课教师,作为矩阵论领域的专家,他能够向学生们提供系统、详细和深入的解,帮助学生们更好地理解矩阵论的理论和应用。同时,他会为学生们设计合理、有挑战性的测验和作业,以帮助学生们全面、有效地巩固和应用所学的知识。 通过MOOC矩阵论课程的测验和作业,学生们可以检验自己对于矩阵论的掌握情况,并通过张宏伟的指导和解,进一步理解和应用矩阵论的知识。这不仅有助于学生们提升自己的学术水平,在将来的学习和研究中能够更好地应用矩阵论,还能够培养学生们的逻辑思维和问题解决能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值