凸优化学习1

min ⁡ f ( x )  s.t.  x ∈ C \begin{array}{ll} \min & f(\mathbf{x}) \\ \text { s.t. } & x \in C \end{array} min s.t. f(x)xC
其中 C C C是一个闭凸集, f f f C C C上的凸函数

这种问题叫做凸优化问题

定理1

凸优化局部极小值=全局最小:
f : C → R f:C\to \mathbb{R} f:CR是一个定义在凸集 C C C上的凸函数。
x ∗ ∈ C \mathbf{x}^{*}\in C xC f f f C C C上的一个局部极小值,
x ∗ \mathbf{x}^{*} x f f f C C C上的全局最小值

证明:
因为 x ∗ \mathbf{x}^{*} x是局部极小值, ∃ r > 0 , ∀ x ∈ B ( x ∗ , r ) , f ( x ) ≥ f ( x ∗ ) \exists r>0,\forall \mathbf{x} \in B(\mathbf{x}^{*},r),f(\mathbf{x})\ge f(\mathbf{x}^{*}) r>0,xB(x,r),f(x)f(x)
y ∈ C \mathbf{y}\in C yC y ∉ B ( x ∗ , r ) \mathbf{y}\notin B(\mathbf{x}^{*},r) y/B(x,r),则当 0 < λ < r ∥ y − x ∗ ∥ < 1 0< \lambda <\frac{r}{\| \mathbf{y}-\mathbf{x}^{*}\|}< 1 0<λ<yxr<1
x ∗ + λ ( y − x ∗ ) = ( 1 − λ ) x ∗ + λ y ∈ B ( x ∗ , r ) \mathbf{x}^{*}+\lambda(\mathbf{y}-\mathbf{x}^{*})=(1-\lambda)\mathbf{x}^{*}+\lambda \mathbf{y} \in B(\mathbf{x}^{*},r) x+λ(yx)=(1λ)x+λyB(x,r)
f ( x ∗ ) ≤ f ( ( 1 − λ ) x ∗ + λ y ) f ( x ∗ ) ≤ ( 1 − λ ) f ( x ∗ ) + λ f ( y ) f ( x ∗ ) ≤ f ( y ) \begin{aligned} f(\mathbf{x}^{*})&\le f((1-\lambda)\mathbf{x}^{*}+\lambda \mathbf{y})\\ f(\mathbf{x}^{*})&\le (1-\lambda)f(\mathbf{x}^{*})+\lambda f(\mathbf{y})\\ f(\mathbf{x}^{*})&\le f(\mathbf{y}) \end{aligned} f(x)f(x)f(x)f((1λ)x+λy)(1λ)f(x)+λf(y)f(y)

定理2

f : C → R f:C\to \mathbb{R} f:CR是一个定义在凸集 C C C上的严格凸函数。
x ∗ ∈ C \mathbf{x}^{*}\in C xC f f f C C C上的一个局部极小值,
x ∗ \mathbf{x}^{*} x f f f C C C上的严格全局最小值

定理3

f : C → R f:C\to \mathbb{R} f:CR是一个定义在凸集 C C C上的凸函数。
设凸优化问题的解集为 X ∗ X^{*} X,则 X ∗ X^{*} X是凸集

如果 f f f是严格凸函数,则 X ∗ X^{*} X至多存在一个元素

证明:
如果 X ∗ X^{*} X为空集或只有一个元素,结论显然成立

x ∗ , y ∗ ∈ X ∗ , f ∗ = f ( x ∗ ) \mathbf{x}^{*},\mathbf{y}^{*}\in X^{*},f^{*}=f(x^{*}) x,yX,f=f(x),
∀ 0 ≤ λ ≤ 1 , λ x ∗ + ( 1 − λ ) y ∗ ∈ C \forall 0\le \lambda \le 1,\lambda \mathbf{x}^{*}+(1-\lambda)\mathbf{y}^{*}\in C 0λ1,λx+(1λ)yC
f ∗ ≤ f ( λ x ∗ + ( 1 − λ ) y ∗ ) ≤ λ f ( x ∗ ) + ( 1 − λ ) f ( y ∗ ) = f ∗ f^*\le f(\lambda \mathbf{x}^{*}+(1-\lambda)\mathbf{y}^{*})\le \lambda f(\mathbf{x}^{*})+(1-\lambda)f(\mathbf{y}^*)=f^* ff(λx+(1λ)y)λf(x)+(1λ)f(y)=f
所以 X ∗ X^* X是凸集

如果 f f f是严格凸函数,
假设 x ∗ , y ∗ ∈ X ∗ , f ∗ = f ( x ∗ ) \mathbf{x}^{*},y^{*}\in X^{*},f^{*}=f(\mathbf{x}^{*}) x,yX,f=f(x),
f ∗ < f ( 1 2 x ∗ + 1 2 y ∗ ) < 1 2 f ( x ∗ ) + 1 2 f ( y ∗ ) = f ∗ f^*< f(\frac{1}{2} \mathbf{x}^{*}+\frac{1}{2}\mathbf{y}^{*})< \frac{1}{2} f(\mathbf{x}^{*})+\frac{1}{2}f(\mathbf{y}^*)=f^* f<f(21x+21y)<21f(x)+21f(y)=f
矛盾

正交投影算子

给定一个非空的闭凸集 C C C,正交投影算子 P C : R n → C P_C:\mathbb{R}^n\to C PC:RnC定义为
P C ( X ) = arg ⁡ min ⁡ { ∥ y − x ∥ 2 : y ∈ C } P_C(\mathbf{X})=\arg\min\{\|\mathbf{y}-\mathbf{x}\|^2:\mathbf{y}\in C\} PC(X)=argmin{yx2:yC}
可以理解为 C C C中到 x \mathbf{x} x最近的那个点

投影第一定理

C C C是一个非空闭凸集,则正交投影算子有唯一最优解

证明:
因为这是一个严格的凸函数,并且是一个二次函数,所以他是一个强制函数
因为连续的强制函数在一个非空闭集上一定有最小值,所以这个问题一定有解
因为他是严格凸函数,所以有唯一全局最小值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值