Sherman–Morrison formula和Woodbury matrix identity

引理

X ∈ R m × n , Y ∈ R n × m \mathbf{X}\in\mathbb{R}^{m\times n},\mathbf{Y}\in\mathbb{R}^{n\times m} XRm×n,YRn×m,则 X Y , Y X \mathbf{XY},\mathbf{YX} XY,YX具有相同的非零特征值(重数也一样)
证明:
( I m X 0 I n ) − 1 ( X Y 0 Y 0 ) ( I m X 0 I n ) = ( 0 0 Y Y X ) \begin{pmatrix} \mathbf{I}_m &\mathbf{X}\\ 0&\mathbf{I}_n \end{pmatrix}^{-1}\begin{pmatrix} \mathbf{XY}&0\\ \mathbf{Y}&0 \end{pmatrix}\begin{pmatrix} \mathbf{I}_m &\mathbf{X}\\ 0&\mathbf{I}_n \end{pmatrix}=\begin{pmatrix} 0&0\\ \mathbf{Y}&\mathbf{YX} \end{pmatrix} (Im0XIn)1(XYY00)(Im0XIn)=(0Y0YX)
因为相似,所以具有相同的非零特征值(重数也一样)

Sherman–Morrison formula

A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n非奇异, u , v ∈ R n \mathbf{u},\mathbf{v}\in\mathbb{R}^n u,vRn,则
A + u v T \mathbf{A}+\mathbf{u}\mathbf{v}^T A+uvT可逆当且仅当 1 + v T A − 1 u ≠ 0 1+\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\neq 0 1+vTA1u=0,且
( A + u v T ) − 1 = A − 1 − A − 1 u v T A − 1 1 + v T A − 1 u \left(\mathbf{A}+\mathbf{u}\mathbf{v}^{T}\right)^{-1}=\mathbf{A}^{-1}-\frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1+\mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u}} (A+uvT)1=A11+vTA1uA1uvTA1

证明:
假设 1 + v T A − 1 u ≠ 0 1+\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\neq 0 1+vTA1u=0
( A + u v T ) ( A − 1 − A − 1 u v T A − 1 1 + v T A − 1 u ) = I + u v T A − 1 − u v T A − 1 + u v T A − 1 u v T A − 1 1 + v T A − 1 u = I + u v T A − 1 − u v T ( 1 + v T A − 1 u ) A − 1 1 + v T A − 1 u = I + u v T A − 1 − u v T A − 1 = I \begin{aligned} &\quad\left(\mathbf{A}+\mathbf{u}\mathbf{v}^{T}\right)\left(\mathbf{A}^{-1}-\frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1+\mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u}}\right)\\ &=\mathbf{I}+\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}-\frac{\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}+\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1+\mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u}}\\ &=\mathbf{I}+\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}-\frac{\mathbf{u}\mathbf{v}^T\left(1+\mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u}\right)\mathbf{A}^{-1}}{1+\mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u}}\\ &=\mathbf{I}+\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}-\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\\ &=\mathbf{I} \end{aligned} (A+uvT)(A11+vTA1uA1uvTA1)=I+uvTA11+vTA1uuvTA1+uvTA1uvTA1=I+uvTA11+vTA1uuvT(1+vTA1u)A1=I+uvTA1uvTA1=I

假设 A + u v T \mathbf{A}+\mathbf{u}\mathbf{v}^T A+uvT可逆
根据矩阵行列式引理,
∣ A + u v T ∣ = ( 1 + v T A − 1 u ) ∣ A ∣ \left|\mathbf{A}+\mathbf{u}\mathbf{v}^T\right|=\left(1+\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\right)\left|\mathbf{A}\right| A+uvT=(1+vTA1u)A
于是
1 + v T A − 1 u ≠ 0 1+\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\neq 0 1+vTA1u=0

Sherman–Morrison-Woodbury formula

A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n非奇异, U , V ∈ R n × k \mathbf{U},\mathbf{V}\in\mathbb{R}^{n\times k} U,VRn×k,如果 A + U V T \mathbf{A}+\mathbf{U}\mathbf{V}^T A+UVT非奇异,则
( A + U V T ) − 1 = A − 1 − A − 1 U ( I k + V T A − 1 U ) − 1 V T A − 1 \left(\mathbf{A}+\mathbf{U}\mathbf{V}^{T}\right)^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1}\mathbf{U}\left(\mathbf{I}_k+\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right)^{-1}\mathbf{V}^T\mathbf{A}^{-1} (A+UVT)1=A1A1U(Ik+VTA1U)1VTA1
( n = 1 n=1 n=1时就是Sherman–Morrison formula)

证明:
因为 A + U V T \mathbf{A}+\mathbf{U}\mathbf{V}^T A+UVT非奇异,
A + U V T = A ( I n + A − 1 U V T ) \mathbf{A}+\mathbf{U}\mathbf{V}^T=\mathbf{A}\left(\mathbf{I}_n+\mathbf{A}^{-1}\mathbf{U}\mathbf{V}^T\right) A+UVT=A(In+A1UVT)
所以 I n + A − 1 U V T \mathbf{I}_n+\mathbf{A}^{-1}\mathbf{U}\mathbf{V}^T In+A1UVT
根据引理, ( A − 1 U ) V T \left(\mathbf{A}^{-1}\mathbf{U}\right)\mathbf{V}^T (A1U)VT V T ( A − 1 U ) \mathbf{V}^{T}\left(\mathbf{A}^{-1}\mathbf{U}\right) VT(A1U)具有相同的非零特征值
所以 I k + V T A − 1 U \mathbf{I}_k+\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U} Ik+VTA1U可逆

( A + U V T ) ( A − 1 − A − 1 U ( I k + V T A − 1 U ) − 1 V T A − 1 ) = I + U V T A − 1 − ( U + U V T A − 1 U ) ( I k + V T A − 1 U ) − 1 V T A − 1 = I + U V T A − 1 − U ( I + V T A − 1 U ) ( I k + V T A − 1 U ) − 1 V T A − 1 = I + U V T A − 1 − U V T A − 1 = I \begin{aligned} &\quad \left(\mathbf{A}+\mathbf{U}\mathbf{V}^{T}\right)\left(\mathbf{A}^{-1}-\mathbf{A}^{-1}\mathbf{U}\left(\mathbf{I}_k+\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right)^{-1}\mathbf{V}^T\mathbf{A}^{-1}\right)\\ &=\mathbf{I}+\mathbf{U}\mathbf{V}^T\mathbf{A}^{-1}-\left(\mathbf{U}+\mathbf{U}\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right)\left(\mathbf{I}_k+\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right)^{-1}\mathbf{V}^T\mathbf{A}^{-1}\\ &=\mathbf{I}+\mathbf{U}\mathbf{V}^T\mathbf{A}^{-1}-\mathbf{U}\left(\mathbf{I}+\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right)\left(\mathbf{I}_k+\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right)^{-1}\mathbf{V}^T\mathbf{A}^{-1}\\ &=\mathbf{I}+\mathbf{U}\mathbf{V}^T\mathbf{A}^{-1}-\mathbf{U}\mathbf{V}^T\mathbf{A}^{-1}\\ &=\mathbf{I} \end{aligned} (A+UVT)(A1A1U(Ik+VTA1U)1VTA1)=I+UVTA1(U+UVTA1U)(Ik+VTA1U)1VTA1=I+UVTA1U(I+VTA1U)(Ik+VTA1U)1VTA1=I+UVTA1UVTA1=I

Woodbury matrix identity

A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n非奇异, C ∈ R k × k , U ∈ R n × k , V ∈ R k × n \mathbf{C}\in\mathbb{R}^{k\times k},\mathbf{U}\in\mathbb{R}^{n\times k},\mathbf{V}\in\mathbb{R}^{k\times n} CRk×k,URn×k,VRk×n
如果 C , A + U C V \mathbf{C},\mathbf{A}+\mathbf{U}\mathbf{C}\mathbf{V} C,A+UCV可逆,则
( A + U C V ) − 1 = A − 1 − A − 1 U ( C − 1 + V A − 1 U ) V A − 1 \left(\mathbf{A}+\mathbf{U}\mathbf{C}\mathbf{V}\right)^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1}\mathbf{U}\left(\mathbf{C}^{-1}+\mathbf{V}\mathbf{A}^{-1}\mathbf{U}\right)\mathbf{V}\mathbf{A}^{-1} (A+UCV)1=A1A1U(C1+VA1U)VA1
证明:
根据矩阵行列式引理
∣ A + U C V ∣ = ∣ C − 1 + V A − 1 U ∣ ∣ C ∣ ∣ A ∣ \left|\mathbf{A}+\mathbf{U}\mathbf{C}\mathbf{V}\right|=\left|\mathbf{C}^{-1}+\mathbf{V}\mathbf{A}^{-1}\mathbf{U}\right|\left|\mathbf{C}\right|\left|\mathbf{A}\right| A+UCV=C1+VA1UCA
所以 C − 1 + V A − 1 U \mathbf{C}^{-1}+\mathbf{V}\mathbf{A}^{-1}\mathbf{U} C1+VA1U可逆

( A + U C V ) [ A − 1 − A − 1 U ( C − 1 + V A − 1 U ) − 1 V A − 1 ] = { I − U ( C − 1 + V A − 1 U ) − 1 V A − 1 } + { U C V A − 1 − U C V A − 1 U ( C − 1 + V A − 1 U ) − 1 V A − 1 } = { I + U C V A − 1 } − { U ( C − 1 + V A − 1 U ) − 1 V A − 1 + U C V A − 1 U ( C − 1 + V A − 1 U ) − 1 V A − 1 } = I + U C V A − 1 − ( U + U C V A − 1 U ) ( C − 1 + V A − 1 U ) − 1 V A − 1 = I + U C V A − 1 − U C ( C − 1 + V A − 1 U ) ( C − 1 + V A − 1 U ) − 1 V A − 1 = I + U C V A − 1 − U C V A − 1 = I \begin{aligned} &(\mathbf{A}+\mathbf{U} \mathbf{C} \mathbf{V})\left[\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbf{C}^{-1}+\mathbf{V} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V} \mathbf{A}^{-1}\right] \\ =&\left\{\mathbf{I}-\mathbf{U}\left(\mathbf{C}^{-1}+\mathbf{V} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V} \mathbf{A}^{-1}\right\}+\left\{\mathbf{U} \mathbf{C} \mathbf{V} \mathbf{A}^{-1}-\mathbf{U} \mathbf{C} \mathbf{V} \mathbf{A}^{-1} \mathbf{U}\left(\mathbf{C}^{-1}+\mathbf{V} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V} \mathbf{A}^{-1}\right\} \\ =&\left\{\mathbf{I}+\mathbf{U} \mathbf{C} \mathbf{V} \mathbf{A}^{-1}\right\}-\left\{\mathbf{U}\left(\mathbf{C}^{-1}+\mathbf{V} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V} \mathbf{A}^{-1}+\mathbf{U} \mathbf{C} \mathbf{V} \mathbf{A}^{-1} \mathbf{U}\left(\mathbf{C}^{-1}+\mathbf{V} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V} \mathbf{A}^{-1}\right\} \\ =& \mathbf{I}+\mathbf{U} \mathbf{C} \mathbf{V} \mathbf{A}^{-1}-\left(\mathbf{U}+\mathbf{U} \mathbf{C} \mathbf{V} \mathbf{A}^{-1} \mathbf{U}\right)\left(\mathbf{C}^{-1}+\mathbf{V} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V} \mathbf{A}^{-1} \\ =& \mathbf{I}+\mathbf{U} \mathbf{C} \mathbf{V} \mathbf{A}^{-1}-\mathbf{U} \mathbf{C}\left(\mathbf{C}^{-1}+\mathbf{V} \mathbf{A}^{-1} \mathbf{U}\right)\left(\mathbf{C}^{-1}+\mathbf{V} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V} \mathbf{A}^{-1} \\ =& \mathbf{I}+\mathbf{U} \mathbf{C} \mathbf{V} \mathbf{A}^{-1}-\mathbf{U} \mathbf{C} \mathbf{V} \mathbf{A}^{-1} \\ =& \mathbf{I} \end{aligned} ======(A+UCV)[A1A1U(C1+VA1U)1VA1]{IU(C1+VA1U)1VA1}+{UCVA1UCVA1U(C1+VA1U)1VA1}{I+UCVA1}{U(C1+VA1U)1VA1+UCVA1U(C1+VA1U)1VA1}I+UCVA1(U+UCVA1U)(C1+VA1U)1VA1I+UCVA1UC(C1+VA1U)(C1+VA1U)1VA1I+UCVA1UCVA1I

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值