矩阵行列式引理 Matrix Determinant Lemma

在看论文时有用到矩阵行列式引理,搜了一下感觉很有趣,记录在这里。

wiki:https://en.wikipedia.org/wiki/Matrix_determinant_lemma


数学描述 A A A 可逆矩阵, u , v u, v u,v 列向量。则有:
d e t ( A + u v T ) = d e t ( A ) ( 1 + v T A − 1 u ) det(A+uv^T)=det(A)(1+v^TA^{-1}u) det(A+uvT)=det(A)(1+vTA1u)



证明:
首先证明当 A = I A=I A=I时成立,可以发现:
[ I 0 v T 1 ] [ I + u v T u 0 1 ] [ I 0 − v T 1 ] = [ I u 0 1 + v T u ] \left[ \begin{array}{ccc} I & 0 \\ v^T & 1\\ \end{array}\right] \left[ \begin{array}{ccc} I+uv^T & u \\ 0 & 1\\ \end{array}\right] \left[ \begin{array}{ccc} I & 0 \\ - v^T & 1\\ \end{array}\right] = \left[ \begin{array}{ccc} I & u \\ 0 & 1+v^Tu\\ \end{array}\right] [IvT01][I+uvT0u1][IvT01]=[I0u1+vTu]

等式两边同时求取行列式,且左侧第1、3两个矩阵,等式右侧矩阵是上/下三角矩阵,行列式即为对角线的乘积,均为1;故得到:
d e t ( I + u v T ) = 1 + v T u det(I+uv^T) = 1+v^Tu det(I+uvT)=1+vTu
这个式子也是个很常用的表达式,是矩阵行列式引理的特殊形式。如果我们把 ( A + u v T ) (A+uv^T) (A+uvT) 写成 ( A ( 1 + v T A − 1 u ) ) (A(1+v^T A^{-1} u)) (A(1+vTA1u)) 形式,则得到最开始的 d e t ( A + u v T ) = d e t ( A ) ( 1 + v T A − 1 u ) det(A+uv^T)=det(A)(1+v^TA^{-1}u) det(A+uvT)=det(A)(1+vTA1u)


参考论文

Ding, J., Zhou, A. (2007). “Eigenvalues of rank-one updated matrices with some applications”. Applied Mathematics Letters. 20 (12): 1223–1226.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值