在看论文时有用到矩阵行列式引理,搜了一下感觉很有趣,记录在这里。
wiki:https://en.wikipedia.org/wiki/Matrix_determinant_lemma
数学描述:
A
A
A 可逆矩阵,
u
,
v
u, v
u,v 列向量。则有:
d
e
t
(
A
+
u
v
T
)
=
d
e
t
(
A
)
(
1
+
v
T
A
−
1
u
)
det(A+uv^T)=det(A)(1+v^TA^{-1}u)
det(A+uvT)=det(A)(1+vTA−1u)
证明:
首先证明当
A
=
I
A=I
A=I时成立,可以发现:
[
I
0
v
T
1
]
[
I
+
u
v
T
u
0
1
]
[
I
0
−
v
T
1
]
=
[
I
u
0
1
+
v
T
u
]
\left[ \begin{array}{ccc} I & 0 \\ v^T & 1\\ \end{array}\right] \left[ \begin{array}{ccc} I+uv^T & u \\ 0 & 1\\ \end{array}\right] \left[ \begin{array}{ccc} I & 0 \\ - v^T & 1\\ \end{array}\right] = \left[ \begin{array}{ccc} I & u \\ 0 & 1+v^Tu\\ \end{array}\right]
[IvT01][I+uvT0u1][I−vT01]=[I0u1+vTu]
等式两边同时求取行列式,且左侧第1、3两个矩阵,等式右侧矩阵是上/下三角矩阵,行列式即为对角线的乘积,均为1;故得到:
d
e
t
(
I
+
u
v
T
)
=
1
+
v
T
u
det(I+uv^T) = 1+v^Tu
det(I+uvT)=1+vTu
这个式子也是个很常用的表达式,是矩阵行列式引理的特殊形式。如果我们把
(
A
+
u
v
T
)
(A+uv^T)
(A+uvT) 写成
(
A
(
1
+
v
T
A
−
1
u
)
)
(A(1+v^T A^{-1} u))
(A(1+vTA−1u)) 形式,则得到最开始的
d
e
t
(
A
+
u
v
T
)
=
d
e
t
(
A
)
(
1
+
v
T
A
−
1
u
)
det(A+uv^T)=det(A)(1+v^TA^{-1}u)
det(A+uvT)=det(A)(1+vTA−1u)。
参考论文
Ding, J., Zhou, A. (2007). “Eigenvalues of rank-one updated matrices with some applications”. Applied Mathematics Letters. 20 (12): 1223–1226.