矩阵求逆引理(matrix inversion lemma)

论文:Li J, Stoica P. An adaptive filtering approach to spectral estimation and SAR imaging[J]. IEEE Transactions on Signal Processing, 2002, 44(6):1469-1484.

问题描述:
已知这里写图片描述
Q ^ ( ω ) − 1 \hat{Q}(\omega)^{-1} Q^(ω)1?论文里给出应用矩阵求逆引理即matrix inversion lemma得到!
这里写图片描述
参考:
http://www.360doc.com/content/15/1219/11/28093736_521471881.shtml
贴图:
这里写图片描述
这里写图片描述
这里写图片描述

类比这位大神的推导,为了方便,我省略的变量 ω \omega ω,上标 ^ \hat{} ^
推导过程如下:
Q − 1 = ( R − Z Z H ) − 1 = R − 1 + X \mathbf{Q}^{-1}=(\mathbf{R}-\mathbf{Z}\mathbf{Z}^H)^{-1}=\mathbf{R}^{-1}+\mathbf{X} Q1=(RZZH)1=R1+X
( R − Z Z H ) ( R − 1 + X ) = I (\mathbf{R}-\mathbf{Z}\mathbf{Z}^H)(\mathbf{R}^{-1}+\mathbf{X})=\mathbf{I} (RZZH)(R1+X=I
E + R X − Z Z H R − 1 − Z Z H X = E \mathbf{E}+\mathbf{R}\mathbf{X}-\mathbf{Z}\mathbf{Z}^H\mathbf{R}^{-1}-\mathbf{Z}\mathbf{Z}^H\mathbf{X}=\mathbf{E} E+RXZZHR1ZZHX=E
( R − Z Z H ) X = Z Z H R − 1 (\mathbf{R}-\mathbf{Z}\mathbf{Z}^H)\mathbf{X}=\mathbf{Z}\mathbf{Z}^H\mathbf{R}^{-1} (RZZH)X=ZZHR1
X = ( R − Z Z H ) − 1 Z Z H R − 1 \mathbf{X}=(\mathbf{R}-\mathbf{Z}\mathbf{Z}^H)^{-1}\mathbf{Z}\mathbf{Z}^{H}\mathbf{R}^{-1} X=(RZZH)1ZZHR1
X = ( Z ( Z − 1 R − Z H ) ) − 1 Z Z H R − 1 \mathbf{X}=(\mathbf{Z}(\mathbf{Z}^{-1}\mathbf{R}-\mathbf{Z}^H))^{-1}\mathbf{Z}\mathbf{Z}^\mathbf{H}\mathbf{R}^{-1} X=(Z(Z1RZH))1ZZHR1
X = ( Z − 1 R − Z H ) − 1 Z H R − 1 \mathbf{X}=(\mathbf{Z}^{-1}\mathbf{R}-\mathbf{Z}^H)^{-1}\mathbf{Z}^{H}\mathbf{R}^{-1} X=(Z1RZH)1ZHR1
X = R − 1 ( Z − 1 − Z H R − 1 ) − 1 Z H R − 1 \mathbf{X}=\mathbf{R}^{-1}(\mathbf{Z}^{-1}-\mathbf{Z}^{H}\mathbf{R}^{-1})^{-1}\mathbf{Z}^H\mathbf{R}^{-1} X=R1(Z1ZHR1)1ZHR1
X = − R − 1 ( Z H R − 1 − Z − 1 ) − 1 Z H R − 1 \mathbf{X}=-\mathbf{R}^{-1}(\mathbf{Z}^H\mathbf{R}^{-1}-\mathbf{Z}^{-1})^{-1}\mathbf{Z}^H\mathbf{R}^{-1} X=R1(ZHR1Z1)1ZHR1
X = − R − 1 ( ( Z H R − 1 Z − Z − 1 Z ) Z − 1 ) − 1 Z H R − 1 \mathbf{X}=-\mathbf{R}^{-1}((\mathbf{Z}^H\mathbf{R}^{-1}\mathbf{Z}-\mathbf{Z}^{-1}\mathbf{Z})\mathbf{Z}^{-1})^{-1}\mathbf{Z}^H\mathbf{R}^{-1} X=R1((ZHR1ZZ1Z)Z1)1ZHR1
X = − R − 1 Z ( Z H R − 1 Z − I ) − 1 Z H R − 1 \mathbf{X}=-\mathbf{R}^{-1}\mathbf{Z}(\mathbf{Z}^H\mathbf{R}^{-1}\mathbf{Z}-I)^{-1}\mathbf{Z}^H\mathbf{R}^{-1} X=R1Z(ZHR1ZI)1ZHR1
Q − 1 = R − 1 + X = R − 1 − R − 1 Z ( Z H R − 1 Z − I ) − 1 Z H R − 1 \mathbf{Q}^{-1}=\mathbf{R}^{-1}+\mathbf{X}=\mathbf{R}^{-1}-\mathbf{R}^{-1}\mathbf{Z}(\mathbf{Z}^H\mathbf{R}^{-1}\mathbf{Z}-\mathbf{I})^{-1}\mathbf{Z}^H\mathbf{R}^{-1} Q1=R1+X=R1R1Z(ZHR1ZI)1ZHR1
证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值