论文:Li J, Stoica P. An adaptive filtering approach to spectral estimation and SAR imaging[J]. IEEE Transactions on Signal Processing, 2002, 44(6):1469-1484.
问题描述:
已知
求
Q
^
(
ω
)
−
1
\hat{Q}(\omega)^{-1}
Q^(ω)−1?论文里给出应用矩阵求逆引理即matrix inversion lemma得到!
参考:
http://www.360doc.com/content/15/1219/11/28093736_521471881.shtml
贴图:
类比这位大神的推导,为了方便,我省略的变量
ω
\omega
ω,上标
^
\hat{}
^
推导过程如下:
Q
−
1
=
(
R
−
Z
Z
H
)
−
1
=
R
−
1
+
X
\mathbf{Q}^{-1}=(\mathbf{R}-\mathbf{Z}\mathbf{Z}^H)^{-1}=\mathbf{R}^{-1}+\mathbf{X}
Q−1=(R−ZZH)−1=R−1+X
(
R
−
Z
Z
H
)
(
R
−
1
+
X
)
=
I
(\mathbf{R}-\mathbf{Z}\mathbf{Z}^H)(\mathbf{R}^{-1}+\mathbf{X})=\mathbf{I}
(R−ZZH)(R−1+X)=I
E
+
R
X
−
Z
Z
H
R
−
1
−
Z
Z
H
X
=
E
\mathbf{E}+\mathbf{R}\mathbf{X}-\mathbf{Z}\mathbf{Z}^H\mathbf{R}^{-1}-\mathbf{Z}\mathbf{Z}^H\mathbf{X}=\mathbf{E}
E+RX−ZZHR−1−ZZHX=E
(
R
−
Z
Z
H
)
X
=
Z
Z
H
R
−
1
(\mathbf{R}-\mathbf{Z}\mathbf{Z}^H)\mathbf{X}=\mathbf{Z}\mathbf{Z}^H\mathbf{R}^{-1}
(R−ZZH)X=ZZHR−1
X
=
(
R
−
Z
Z
H
)
−
1
Z
Z
H
R
−
1
\mathbf{X}=(\mathbf{R}-\mathbf{Z}\mathbf{Z}^H)^{-1}\mathbf{Z}\mathbf{Z}^{H}\mathbf{R}^{-1}
X=(R−ZZH)−1ZZHR−1
X
=
(
Z
(
Z
−
1
R
−
Z
H
)
)
−
1
Z
Z
H
R
−
1
\mathbf{X}=(\mathbf{Z}(\mathbf{Z}^{-1}\mathbf{R}-\mathbf{Z}^H))^{-1}\mathbf{Z}\mathbf{Z}^\mathbf{H}\mathbf{R}^{-1}
X=(Z(Z−1R−ZH))−1ZZHR−1
X
=
(
Z
−
1
R
−
Z
H
)
−
1
Z
H
R
−
1
\mathbf{X}=(\mathbf{Z}^{-1}\mathbf{R}-\mathbf{Z}^H)^{-1}\mathbf{Z}^{H}\mathbf{R}^{-1}
X=(Z−1R−ZH)−1ZHR−1
X
=
R
−
1
(
Z
−
1
−
Z
H
R
−
1
)
−
1
Z
H
R
−
1
\mathbf{X}=\mathbf{R}^{-1}(\mathbf{Z}^{-1}-\mathbf{Z}^{H}\mathbf{R}^{-1})^{-1}\mathbf{Z}^H\mathbf{R}^{-1}
X=R−1(Z−1−ZHR−1)−1ZHR−1
X
=
−
R
−
1
(
Z
H
R
−
1
−
Z
−
1
)
−
1
Z
H
R
−
1
\mathbf{X}=-\mathbf{R}^{-1}(\mathbf{Z}^H\mathbf{R}^{-1}-\mathbf{Z}^{-1})^{-1}\mathbf{Z}^H\mathbf{R}^{-1}
X=−R−1(ZHR−1−Z−1)−1ZHR−1
X
=
−
R
−
1
(
(
Z
H
R
−
1
Z
−
Z
−
1
Z
)
Z
−
1
)
−
1
Z
H
R
−
1
\mathbf{X}=-\mathbf{R}^{-1}((\mathbf{Z}^H\mathbf{R}^{-1}\mathbf{Z}-\mathbf{Z}^{-1}\mathbf{Z})\mathbf{Z}^{-1})^{-1}\mathbf{Z}^H\mathbf{R}^{-1}
X=−R−1((ZHR−1Z−Z−1Z)Z−1)−1ZHR−1
X
=
−
R
−
1
Z
(
Z
H
R
−
1
Z
−
I
)
−
1
Z
H
R
−
1
\mathbf{X}=-\mathbf{R}^{-1}\mathbf{Z}(\mathbf{Z}^H\mathbf{R}^{-1}\mathbf{Z}-I)^{-1}\mathbf{Z}^H\mathbf{R}^{-1}
X=−R−1Z(ZHR−1Z−I)−1ZHR−1
Q
−
1
=
R
−
1
+
X
=
R
−
1
−
R
−
1
Z
(
Z
H
R
−
1
Z
−
I
)
−
1
Z
H
R
−
1
\mathbf{Q}^{-1}=\mathbf{R}^{-1}+\mathbf{X}=\mathbf{R}^{-1}-\mathbf{R}^{-1}\mathbf{Z}(\mathbf{Z}^H\mathbf{R}^{-1}\mathbf{Z}-\mathbf{I})^{-1}\mathbf{Z}^H\mathbf{R}^{-1}
Q−1=R−1+X=R−1−R−1Z(ZHR−1Z−I)−1ZHR−1
证毕。