§ 8 拉普拉斯( Laplace) 定理 - 行列式的乘法规则
这一节介绍行列式的拉普拉斯定理,
这个定理可以看成是行列式按一行展开公式的推广.
首先我们把余子式和代数余子式的概念加以推广.
定义 9 在 n n n 阶行列式 D D D 中任意选定 k k k 行 k k k 列 ( k ⩽ n ) (k \leqslant n) (k⩽n),
位于这些行和列的交点上的 k 2 k^{2} k2 个元素按原来的次序组成的 k k k 阶行列式
M M M, 称为行列式 D D D 的 k k k 阶子式. 当 k < n k<n k<n 时,在 D D D 中划去这 k k k 行
k k k 列后余下的元素按照原来的次序组成的 n − k n-k n−k 阶行列式 M ′ M^{\prime} M′ 称为
k k k阶子式 M M M 的余子式.
从定义立刻看出, M M M 也是 M ′ M^{\prime} M′ 的余子式, 所以 M M M 和 M ′ M^{\prime} M′
可以称为 D D D 的一对互余的子式.
例 1 在 4 阶行列式
D = ∣ 1 2 1 4 0 − 1 2 1 0 0 2 1 0 0 1 3 ∣ D=\left|\begin{array}{rrrr} 1 & 2 & 1 & 4 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 3 \end{array}\right| D=
10002−10012214113
中选定第 1.3 行,第 2.4 列得到一个二阶子式
M = ∣ 2 4 0 1 ∣ , M=\left|\begin{array}{ll} 2 & 4 \\ 0 & 1 \end{array}\right|, M=
2041
,
M M M 的余子式为
M ′ = ∣ 0 2 0 1 ∣ . M^{\prime}=\left|\begin{array}{ll} 0 & 2 \\ 0 & 1 \end{array}\right| . M′=
0021
.
例 2 在 5 阶行列式
D = ∣ a 11 a 12 a 13 a 14 a 15 a 21 a 22 a 23 a 24 a 25 ⋮ ⋮ ⋮ ⋮ ⋮ a 51 a 52 a 53 a 54 a 55 ∣ D=\left|\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array}\right| D=
a11a21⋮a51a12a22⋮a52a13a23⋮a53a14a24⋮a54a15a25⋮a55
中
M = ∣ a 12 a 13 a 15 a 22 a 23 a 25 a 42 a 43 a 45 ∣ M=\left|\begin{array}{lll} a_{12} & a_{13} & a_{15} \\ a_{22} & a_{23} & a_{25} \\ a_{42} & a_{43} & a_{45} \end{array}\right| M=
a12a22a42a13a23a43a15a25a45
和
M ′ = ∣ a 31 a 34 a 51 a 54 ∣ M^{\prime}=\left|\begin{array}{ll} a_{31} & a_{34} \\ a_{51} & a_{54} \end{array}\right| M′=
a31a51a34a54
是一对互余的子式.
定义 10 设 D D D 的 k k k 阶子式 M M M 在 D D D 中所在的行、列指标分别是
i 1 , i 2 , ⋯ , i k ; j 1 i_{1}, i_{2}, \cdots, i_{k} ; j_{1} i1,i2,⋯,ik;j1, j 2 , ⋯ , j k j_{2}, \cdots, j_{k} j2,⋯,jk. 则 M M M
的余子式 M ′ M^{\prime} M′ 前面加上符号
( − 1 ) ( i 1 + i 2 + ⋯ + i k ) + ( j 1 + j 2 + ⋯ + j k ) (-1)^{\left(i_{1}+i_{2}+\cdots+i_{k}\right)+\left(j_{1}+j_{2}+\cdots+j_{k}\right)} (−1)(i1+i2+⋯+ik)+(j1+j2+⋯+jk)
后称为 M M M 的代数余子式.
例如, 上述例 1 中 M M M 的代数余子式是
( − 1 ) ( 1 + 3 ) + ( 2 + 4 ) M ′ = M ′ , (-1)^{(1+3)+(2+4)} M^{\prime}=M^{\prime}, (−1)(1+3)+(2+4)M′=M′,
上面例 2 中 M M M 的代数余子式为
( − 1 ) ( 1 + 2 + 4 ) + ( 2 + 3 + 5 ) M ′ = − M ′ . (-1)^{(1+2+4)+(2+3+5)} M^{\prime}=-M^{\prime} . (−1)(1+2+4)+(2+3+5)M′=−M′.
因为 M M M 与 M ′ M^{\prime} M′ 位于行列式 D D D 中不同的行和不同的列,
所以我们有下述
引理 行列式 D D D 的任一个子式 M M M 与它的代数余子式 A A A
的乘积中的每一项都是行列式 D D D 的展开式中的一项, 而且符号也一致.
证明 我们首先讨论 M M M 位于行列式 D D D 的左上方的情形:
D = ∣ a 11 a 12 ⋯ a 1 k a 1 , k + 1 ⋯ a 1 n ⋮ ⋮ M ⋮ ⋮ ⋮ a k 1 a k 2 ⋯ a k k a k , k + 1 ⋯ a k n a k + 1 , 1 a k + 1 , 2 ⋯ a k + 1 , k a k + 1 , k + 1 ⋯ a k + 1 , n ⋮ ⋮ ⋮ ⋮ M ′ ⋮ a n 1 a n 2 ⋯ a n k a n , k + 1 ⋯ a n n ∣ . D=\left|\begin{array}{cccc:ccc} a_{11} & a_{12} & \cdots & a_{1 k} & a_{1, k+1} & \cdots & a_{1 n} \\ \vdots & \vdots & M & \vdots & \vdots & & \vdots \\ a_{k 1} & a_{k 2} & \cdots & a_{k k} & a_{k, k+1} & \cdots & a_{k n} \\ \hdashline a_{k+1,1} & a_{k+1,2} & \cdots & a_{k+1, k} & a_{k+1, k+1} & \cdots & a_{k+1, n} \\ \vdots & \vdots & & \vdots & \vdots & M^{\prime} & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n k} & a_{n, k+1} & \cdots & a_{n n} \end{array}\right| . D=
a11⋮ak1ak+1,1⋮an1a12⋮ak2ak+1,2⋮an2⋯M⋯⋯⋯a1k⋮akkak+1,k⋮anka1,k+1⋮ak,k+1ak+1,k+1⋮an,k+1⋯⋯⋯M′⋯a1n⋮aknak+1,n⋮ann
.
此时 M M M 的代数余子式
A = ( − 1 ) ( 1 + 2 + ⋯ + k ) + ( 1 + 2 + ⋯ + k ) M ′ = M ′ . A=(-1)^{(1+2+\cdots+k)+(1+2+\cdots+k)} M^{\prime}=M^{\prime} . A=(−1)(1+2+⋯+k)+(1+2+⋯+k)M′=M′</
高等代数(二)-行列式08:拉普拉斯( Laplace) 定理 - 行列式的乘法规则
本文详细介绍了拉普拉斯定理,该定理是行列式按行展开公式的推广,涉及子式、余子式和代数余子式等概念。通过举例说明了如何在行列式中确定子式及其余子式,并证明了行列式的任一行的子式与其代数余子式的乘积之和等于行列式本身。此外,还利用拉普拉斯定理证明了两个行列式的乘积是一个新的行列式,即行列式的乘法规则。
摘要由CSDN通过智能技术生成