对称矩阵最小特征值表达式

A ∈ S n \mathbf{A}\in\mathbf{S}^n ASn
λ m i n ( A ) = min ⁡ Y ⪰ 0 tr ⁡ ( Y ) = 1 ⟨ Y , A ⟩ \lambda_{min}\left(\mathbf{A}\right)=\min_{\mathbf{Y}\succeq 0\atop \operatorname{tr}\left(\mathbf{Y}\right)=1}\left\langle\mathbf{Y},\mathbf{A}\right\rangle λmin(A)=tr(Y)=1Y0minY,A
其中 λ m i n \lambda_{min} λmin代表最小特征值
⟨ Y , A ⟩ = tr ⁡ ( Y T A ) \left\langle\mathbf{Y},\mathbf{A}\right\rangle=\operatorname{tr}\left(\mathbf{Y}^T\mathbf{A}\right) Y,A=tr(YTA)

证明:
因为 Y , A ∈ S n \mathbf{Y},\mathbf{A}\in\mathbf{S}^n Y,ASn
对其进行谱分解
A = ∑ i = 1 n λ i p i p i T \mathbf{A}=\sum_{i=1}^{n}\lambda_i\mathbf{p}_i\mathbf{p}_i^T A=i=1nλipipiT
Y = ∑ i = 1 n μ i q i q i T \mathbf{Y}=\sum_{i=1}^{n}\mu_i\mathbf{q}_i\mathbf{q}_i^T Y=i=1nμiqiqiT
其中 λ i \lambda_i λi A \mathbf{A} A的特征值, p i \mathbf{p}_i pi λ i \lambda_i λi对应的特征向量, p i \mathbf{p}_i pi两两标准正交
μ i \mu_i μi Y \mathbf{Y} Y的特征值, q i \mathbf{q}_i qi μ i \mu_i μi对应的特征向量, q i \mathbf{q}_i qi两两标准正交
tr ⁡ ( Y ) = 1 ⇒ ∑ i = 1 n μ i = 1 \operatorname{tr}\left(\mathbf{Y}\right)=1\Rightarrow\sum_{i=1}^{n}\mu_i=1 tr(Y)=1i=1nμi=1
⟨ Y , A ⟩ = tr ⁡ ( Y T A ) = tr ⁡ ( Y A ) = tr ⁡ ( ∑ i = 1 n μ i q i q i T A ) = tr ⁡ ( ∑ i = 1 n μ i q i T A q i ) = ∑ i = 1 n μ i q i T A q i = ∑ i = 1 n μ i q i T ( ∑ j = 1 n λ j p j p j T ) q i = ∑ i = 1 n ∑ j = 1 n μ i q i T λ j p j p j T q i = ∑ i = 1 n ∑ j = 1 n μ i λ j ( q i T p j ) 2 = ∑ j = 1 n λ j ∑ i = 1 n μ i ( q i T p j ) 2 ≥ λ m i n ∑ j = 1 n ∑ i = 1 n μ i ( q i T p j ) 2 = λ m i n ∑ i = 1 n μ i ∑ j = 1 n ( q i T p j ) 2 = λ m i n ∑ i = 1 n μ i q i T P P T q i = λ m i n ∑ i = 1 n μ i q i T q i = λ m i n ∑ i = 1 n μ i = λ m i n \begin{aligned} &\left\langle\mathbf{Y},\mathbf{A}\right\rangle\\ =&\operatorname{tr}\left(\mathbf{Y}^T\mathbf{A}\right)\\ =&\operatorname{tr}\left(\mathbf{Y}\mathbf{A}\right)\\ =&\operatorname{tr}\left(\sum_{i=1}^{n}\mu_i\mathbf{q}_i\mathbf{q}_i^T\mathbf{A}\right)\\ =&\operatorname{tr}\left(\sum_{i=1}^{n}\mu_i\mathbf{q}_i^T\mathbf{A}\mathbf{q}_i\right)\\ =&\sum_{i=1}^{n}\mu_i\mathbf{q}_i^T\mathbf{A}\mathbf{q}_i\\ =&\sum_{i=1}^{n}\mu_i\mathbf{q}_i^T\left(\sum_{j=1}^{n}\lambda_j\mathbf{p}_j\mathbf{p}_j^T\right)\mathbf{q}_i\\ =&\sum_{i=1}^{n}\sum_{j=1}^{n}\mu_i\mathbf{q}_i^T\lambda_j\mathbf{p}_j\mathbf{p}_j^T\mathbf{q}_i\\ =&\sum_{i=1}^{n}\sum_{j=1}^{n}\mu_i\lambda_j\left(\mathbf{q}_i^T\mathbf{p}_j\right)^2\\ =&\sum_{j=1}^{n}\lambda_j\sum_{i=1}^{n}\mu_i\left(\mathbf{q}_i^T\mathbf{p}_j\right)^2\\ \ge&\lambda_{min}\sum_{j=1}^{n}\sum_{i=1}^{n}\mu_i\left(\mathbf{q}_i^T\mathbf{p}_j\right)^2\\ =&\lambda_{min}\sum_{i=1}^{n}\mu_i\sum_{j=1}^{n}\left(\mathbf{q}_i^T\mathbf{p}_j\right)^2\\ =&\lambda_{min}\sum_{i=1}^{n}\mu_i\mathbf{q}_i^T\mathbf{P}\mathbf{P}^T\mathbf{q}_i\\ =&\lambda_{min}\sum_{i=1}^{n}\mu_i\mathbf{q}_i^T\mathbf{q}_i\\ =&\lambda_{min}\sum_{i=1}^{n}\mu_i\\ =&\lambda_{min} \end{aligned} ==============Y,Atr(YTA)tr(YA)tr(i=1nμiqiqiTA)tr(i=1nμiqiTAqi)i=1nμiqiTAqii=1nμiqiT(j=1nλjpjpjT)qii=1nj=1nμiqiTλjpjpjTqii=1nj=1nμiλj(qiTpj)2j=1nλji=1nμi(qiTpj)2λminj=1ni=1nμi(qiTpj)2λmini=1nμij=1n(qiTpj)2λmini=1nμiqiTPPTqiλmini=1nμiqiTqiλmini=1nμiλmin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值