矩阵论——特征值和特征向量

本文介绍了线性代数中的核心概念——特征值和特征向量,讨论了特殊矩阵的特征值特性,如奇异矩阵、投影矩阵和置换矩阵。对称矩阵的特征值为实数,而反对称矩阵的特征值为纯虚数。文章还阐述了矩阵对角化的过程及其应用,包括计算矩阵幂和解决斐波那契数列问题。
摘要由CSDN通过智能技术生成

引言

对于 y = f ( x ) y=f(x) y=f(x),即 x → f y x\xrightarrow{f}y xf y,类似地 x → A A x x\xrightarrow{A}Ax xA Ax,而特征值(Eigenvalue)与特征向量(Eigenvectors)研究的正是 x x x A x Ax Ax方向相同 的情况。

特征向量和特征向量

使得 A x Ax Ax平行于 x x x的特殊向量就是特征向量,即 A x = λ x Ax=\lambda x Ax=λx.

特殊矩阵的特征值
  1. A奇异矩阵 λ \lambda λ=0是其特征值。
  2. P投影矩阵,则对于 x x x in plane,有 P x = x Px=x Px=x,故 λ \lambda λ=1是其特征值;对于 x ⊥ x \perp x plane,有 P x = 0 x Px=0x Px=0x,故 λ \lambda λ=0是其特征值 。
  3. A置换矩阵,如 [ 0 1 1 0 ] \begin{bmatrix}0&1\\1&0\end{bmatrix} [0110],该矩阵起将两行互换的作用,故当 x 1 = x 2 x_1=x_2 x1=x2时, A x = x Ax=x Ax=x,如 A [ 1 1 ] = [ 1 1 ] A\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1\\1\end{bmatrix} A[11]=[11];此外,当 x 1 = − x 2 x_1=-x_2 x1=x2时, A x = − x Ax=-x Ax=x,如 A [ 1 − 1 ] = [ − 1 1 ] A\begin{bmatrix}1\\-1\end{bmatrix}=\begin{bmatrix}-1\\1\end{bmatrix} A[11]=[11]
  4. 对称矩阵的特征值是实数,反对称矩阵的特征值是纯虚数。
  5. 三角矩阵的特征值就是对角线上的值。

每个向量做90度旋转
[ cos ⁡ 90 ° − sin ⁡ 90 ° sin ⁡ 90 ° cos ⁡ 90 ° ] = [ 0 − 1 1 0 ] \begin{bmatrix}\cos90\degree&-\sin90\degree\\\sin90\degree&\cos90\degree\end{bmatrix}=\begin{bmatrix}0&-1\\1&0\end{bmatrix} [cos90°sin90°

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值