解线性方程组的迭代法

考虑线性方程组
A x = b \mathbf{Ax}=\mathbf{b} Ax=b
其中 A \mathbf{A} A非奇异

A \mathbf{A} A是大型稀疏矩阵的时候,用迭代法解比较好

前置知识

谱半径:https://blog.csdn.net/qq_39942341/article/details/126238464?spm=1001.2014.3001.5501
矩阵微积分:https://blog.csdn.net/qq_39942341/article/details/126255882?spm=1001.2014.3001.5501

对角占优矩阵

A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n
严格对角占优矩阵:如果 A \mathbf{A} A的元素满足
∣ a i i ∣ > ∑ j = 1 j ≠ i n ∣ a i j ∣ , i = 1 , 2 , ⋯   , n \left|a_{ii}\right|>\sum_{j=1\atop j\neq i}^{n}\left|a_{ij}\right|,\quad i=1,2,\cdots,n aii>j=ij=1naij,i=1,2,,n

严格对角占优矩阵:如果 A \mathbf{A} A的元素满足
∣ a i i ∣ ≥ ∑ j = 1 j ≠ i n ∣ a i j ∣ , i = 1 , 2 , ⋯   , n \left|a_{ii}\right|\ge \sum_{j=1\atop j\neq i}^{n}\left|a_{ij}\right|,\quad i=1,2,\cdots,n aiij=ij=1naij,i=1,2,,n
且上式至少由一个不等式严格成立

可约于不可约矩阵

如果存在置换矩阵 P \mathbf{P} P使得
P T A P = ( A 11 A 12 0 A 22 ) \mathbf{P}^T\mathbf{A}\mathbf{P}=\begin{pmatrix} \mathbf{A}_{11}&\mathbf{A}_{12}\\ \mathbf{0}&\mathbf{A}_{22}\\ \end{pmatrix} PTAP=(A110A12A22)
其中 A 11 \mathbf{A}_{11} A11 r r r阶方阵, A 22 \mathbf{A}_{22} A22 n − r n-r nr阶方阵,则称 A \mathbf{A} A为可约矩阵
如果不存在这样的置换矩阵,则称 A \mathbf{A} A为不可约矩阵

对角占优定理

如果 A \mathbf{A} A为严格对角占优矩阵或不可约弱对角占优矩阵,则 A \mathbf{A} A非奇异
证明:
A \mathbf{A} A为严格对角占优矩阵
假设 ∣ A ∣ = 0 \left|\mathbf{A}\right|=0 A=0,则 A x = 0 \mathbf{Ax}=\mathbf{0} Ax=0有非零解,则 ∣ x k ∣ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ≠ 0 \left|x_k\right|=\max\limits_{1\le i\le n}\left|x_i\right|\neq 0 xk=1inmaxxi=0

∑ j = 1 n a k j x j = 0 \sum_{j=1}^{n}a_{kj}x_j=0 j=1nakjxj=0
∣ a k k x k ∣ = ∣ a k k x k − ∑ j = 1 n a k j x j ∣ = ∣ ∑ j = 1 j ≠ k n a k j x j ∣ ≤ ∑ j = 1 j ≠ k n ∣ a k j ∣ ∣ x j ∣ ≤ ∣ x k ∣ ∑ j = 1 j ≠ k n ∣ a k j ∣ \left|a_{kk}x_k\right|=\left|a_{kk}x_k-\sum_{j=1}^{n}a_{kj}x_j\right|=\left|\sum_{j=1\atop j\neq k}^n a_{kj}x_j\right|\le \sum_{j=1\atop j\neq k}^n \left|a_{kj}\right|\left|x_j\right|\le \left|x_k\right| \sum_{j=1\atop j\neq k}^n \left|a_{kj}\right| akkxk= akkxkj=1nakjxj = j=kj=1nakjxj j=kj=1nakjxjxkj=kj=1nakj

∣ a k k ∣ ≤ ∑ j = 1 j ≠ k n ∣ a k j ∣ \left|a_{kk}\right|\le \sum_{j=1\atop j\neq k}^n \left|a_{kj}\right| akkj=kj=1nakj
矛盾,所以 A \mathbf{A} A非奇异

A \mathbf{A} A为不可约弱对角占优矩阵
假设 ∣ A ∣ = 0 \left|\mathbf{A}\right|=0 A=0,则 A x = 0 \mathbf{Ax}=\mathbf{0} Ax=0有非零解
J = { k ∣ ∣ x k ∣ ≥ ∣ x i ∣ , i = 1 , 2 , ⋯   , n ; ∃ j , ∣ x k ∣ > ∣ x j ∣ } J=\left\{k|\left|x_k\right|\ge\left|x_i\right|,i=1,2,\cdots,n;\exists j,\left|x_k\right|>\left|x_j\right|\right\} J={kxkxi,i=1,2,,n;j,xk>xj}
如果 J = ∅ J=\empty J=,则 x = l e ( l ≠ 0 ) \mathbf{x}=l\mathbf{e}\left(l\neq 0\right) x=le(l=0)
对于 k = 1 , 2 , ⋯   , n k=1,2,\cdots,n k=1,2,,n
∑ j = 1 n a k j x j = 0 ⇒ ∑ j = 1 n a k j = 0 \sum_{j=1}^{n}a_{kj}x_j=0\Rightarrow \sum_{j=1}^{n}a_{kj}=0 j=1nakjxj=0j=1nakj=0
∣ a k k ∣ = ∣ a k k − ∑ j = 1 n a k j ∣ = ∣ ∑ j = 1 j ≠ k n a k j ∣ ≤ ∑ j = 1 j ≠ k n ∣ a k j ∣ \left|a_{kk}\right|=\left|a_{kk}-\sum_{j=1}^{n}a_{kj}\right|=\left|\sum_{j=1\atop j\neq k}^n a_{kj}\right|\le \sum_{j=1\atop j\neq k}^n \left|a_{kj}\right| akk= akkj=1nakj = j=kj=1nakj j=kj=1nakj
矛盾,所以 J ≠ ∅ J\neq \empty J=

∣ a k k x k ∣ = ∣ a k k x k − ∑ j = 1 n a k j x j ∣ = ∣ ∑ j = 1 j ≠ k n a k j x j ∣ ≤ ∑ j = 1 j ≠ k n ∣ a k j ∣ ∣ x j ∣ ⇒ ∣ a k k ∣ ≤ ∑ j = 1 j ≠ k n ∣ a k j ∣ ∣ x j ∣ ∣ x k ∣ \left|a_{kk}x_k\right|=\left|a_{kk}x_k-\sum_{j=1}^{n}a_{kj}x_j\right|=\left|\sum_{j=1\atop j\neq k}^n a_{kj}x_j\right|\le \sum_{j=1\atop j\neq k}^n \left|a_{kj}\right|\left|x_j\right|\Rightarrow \left|a_{kk}\right|\le \sum_{j=1\atop j\neq k}^n \left|a_{kj}\right|\frac{\left|x_j\right|}{\left|x_k\right|} akkxk= akkxkj=1nakjxj = j=kj=1nakjxj j=kj=1nakjxjakkj=kj=1nakjxkxj
因为 ∣ a k k ∣ ≥ ∑ j = 1 j ≠ k n ∣ a k j ∣ \left|a_{kk}\right|\ge \sum\limits_{j=1\atop j\neq k}^{n}\left|a_{kj}\right| akkj=kj=1nakj
于是
∑ j = 1 j ≠ k n ∣ a k j ∣ ≤ ∑ j = 1 j ≠ k n ∣ a k j ∣ ∣ x j ∣ ∣ x k ∣ \sum\limits_{j=1\atop j\neq k}^{n}\left|a_{kj}\right|\le \sum_{j=1\atop j\neq k}^n \left|a_{kj}\right|\frac{\left|x_j\right|}{\left|x_k\right|} j=kj=1nakjj=kj=1nakjxkxj
也就是说 ∀ k ∈ J , j ∉ J \forall k\in J,j\not\in J kJ,jJ,有 a k j = 0 a_{kj}=0 akj=0
取置换矩阵 P \mathbf{P} P,使得 P A P T \mathbf{P}\mathbf{A}\mathbf{P}^T PAPT为分块上三角矩阵 ( a k j ) \left(a_{kj}\right) (akj)换到左下角
矛盾,所以 A \mathbf{A} A非奇异

迭代法

定义

对于给定的线性方程组 x = B x + f \mathbf{x}=\mathbf{Bx}+f x=Bx+f,( A = I − B \mathbf{A}=\mathbf{I}-\mathbf{B} A=IB)用公式
x ( k + 1 ) = B x ( k ) + f , k = 0 , 1 , 2 , ⋯   , \mathbf{x}^{(k+1)}=\mathbf{B}\mathbf{x}^{(k)}+\mathbf{f},\quad k=0,1,2,\cdots, x(k+1)=Bx(k)+f,k=0,1,2,,
逐步迭代求近似解的方法称为迭代法

如果 lim ⁡ k → ∞ x ( k ) \lim\limits_{k\to\infty}\mathbf{x}^{(k)} klimx(k)存在(记为 x ∗ \mathbf{x}^* x),称此迭代法收敛,显然 x ∗ \mathbf{x}^* x就是此方程组的解,否则称为此迭代法发散

ϵ ( k + 1 ) = x ( k + 1 ) − x ∗ \mathbf{\epsilon}^{(k+1)}=\mathbf{x}^{(k+1)}-\mathbf{x}^* ϵ(k+1)=x(k+1)x
ϵ ( k ) = B ϵ ( k − 1 ) = ⋯ = B k ϵ ( 0 ) \mathbf{\epsilon}^{(k)}=\mathbf{B}\mathbf{\epsilon}^{(k-1)}=\cdots=\mathbf{B}^k\mathbf{\epsilon}^{(0)} ϵ(k)=Bϵ(k1)==Bkϵ(0)
要想 { x ( k ) } \left\{\mathbf{x}^{(k)}\right\} {x(k)}收敛,就要 lim ⁡ k → ∞ ϵ ( k ) = 0 \lim\limits_{k\to\infty}\mathbf{\epsilon}^{(k)}=\mathbf{0} klimϵ(k)=0,就需要研究 B \mathbf{B} B满足什么条件时 B k → 0 ( k → ∞ ) \mathbf{B}^k\to\mathbf{0}\left(k\to\infty\right) Bk0(k)

建立

A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n非奇异
A \mathbf{A} A分裂为
A = M − N \mathbf{A}=\mathbf{M}-\mathbf{N} A=MN
其中 M \mathbf{M} M非奇异,且使 M x = d \mathbf{M}\mathbf{x}=\mathbf{d} Mx=d容易求解,一般选择为 A \mathbf{A} A的某种近似,称 M \mathbf{M} M为分裂矩阵

M x = N x + b \mathbf{M}\mathbf{x}=\mathbf{N}\mathbf{x}+\mathbf{b} Mx=Nx+b
所以求解 A x = b \mathbf{Ax}=\mathbf{b} Ax=b等价于求解 x = M − 1 N x + M − 1 b \mathbf{x}=\mathbf{M}^{-1}\mathbf{N}\mathbf{x}+\mathbf{M}^{-1}\mathbf{b} x=M1Nx+M1b
即求解
x = B x + f \mathbf{x}=\mathbf{Bx}+\mathbf{f} x=Bx+f
从而可以构造一阶定常迭代法
{ x ( 0 ) 初始向量 x ( k + 1 ) = B x ( k ) + f k = 0 , 1 , ⋯ \begin{cases} \mathbf{x}^{(0)}&\text{初始向量}\\ \mathbf{x}^{(k+1)}=\mathbf{B}\mathbf{x}^{(k)}+\mathbf{f}&k=0,1,\cdots \end{cases} {x(0)x(k+1)=Bx(k)+f初始向量k=0,1,
其中 B = M − 1 N = M − 1 ( M − A ) = I − M − 1 A , f = M − 1 b \mathbf{B}=\mathbf{M}^{-1}\mathbf{N}=\mathbf{M}^{-1}\left(\mathbf{M}-\mathbf{A}\right)=\mathbf{I}-\mathbf{M}^{-1}\mathbf{A},\mathbf{f}=\mathbf{M}^{-1}\mathbf{b} B=M1N=M1(MA)=IM1A,f=M1b

B = I − M − 1 A \mathbf{B}=\mathbf{I}-\mathbf{M}^{-1}\mathbf{A} B=IM1A为迭代法的迭代矩阵

收敛性

迭代法收敛的充要条件时矩阵 B \mathbf{B} B的谱半径 ρ ( B ) < 1 \rho\left(\mathbf{B}\right)<1 ρ(B)<1
证明:
充分性:设 ρ ( B ) < 1 \rho\left(\mathbf{B}\right)<1 ρ(B)<1,
易知 A = I − B ≻ 0 \mathbf{A}=\mathbf{I}-\mathbf{B}\succ 0 A=IB0
所以 A x = f \mathbf{Ax}=\mathbf{f} Ax=f有唯一解,记为 x ∗ \mathbf{x}^* x,则
x ∗ = B x ∗ + f \mathbf{x}^*=\mathbf{B}\mathbf{x}^*+\mathbf{f} x=Bx+f
误差向量
ϵ ( k ) = x ( k ) − x ∗ = B k ϵ ( 0 ) , ϵ ( 0 ) = x ( 0 ) − x ∗ \mathbf{\epsilon}^{(k)}=\mathbf{x}^{(k)}-\mathbf{x}^*=\mathbf{B}^k\mathbf{\epsilon}^{(0)},\quad\mathbf{\epsilon}^{(0)}=\mathbf{x}^{(0)}-\mathbf{x}^* ϵ(k)=x(k)x=Bkϵ(0),ϵ(0)=x(0)x
ρ ( B ) < 1 \rho\left(\mathbf{B}\right)<1 ρ(B)<1,有 lim ⁡ k → ∞ B k = 0 \lim\limits_{k\to\infty}\mathbf{B}^{k}=\mathbf{0} klimBk=0
于是 lim ⁡ k → ∞ ϵ k = 0 \lim\limits_{k\to\infty}\mathbf{\epsilon}^k=\mathbf{0} klimϵk=0,即 lim ⁡ k → ∞ x ( k ) = x ∗ \lim\limits_{k\to\infty}\mathbf{x}^{(k)}=\mathbf{x}^* klimx(k)=x

必要性:设对于任意 x ( 0 ) \mathbf{x}^{(0)} x(0)
lim ⁡ k → ∞ x ( k ) = x ∗ \lim\limits_{k\to\infty}\mathbf{x}^{(k)}=\mathbf{x}^* klimx(k)=x
其中 x ( k + 1 ) = B x ( k ) + f \mathbf{x}^{(k+1)}=\mathbf{B}\mathbf{x}^{(k)}+\mathbf{f} x(k+1)=Bx(k)+f,显然 x ∗ = B x ∗ + f \mathbf{x}^{*}=\mathbf{B}\mathbf{x}^{*}+\mathbf{f} x=Bx+f
ϵ ( k ) = x ( k ) − x ∗ = B k ϵ ( 0 ) → 0 ( k → ∞ ) \mathbf{\epsilon}^{(k)}=\mathbf{x}^{(k)}-\mathbf{x}^*=\mathbf{B}^k\mathbf{\epsilon}^{(0)}\to\mathbf{0}\left(k\to\infty\right) ϵ(k)=x(k)x=Bkϵ(0)0(k)

lim ⁡ k → ∞ B k = 0 \lim\limits_{k\to\infty}\mathbf{B}^k=\mathbf{0} klimBk=0
所以 ρ ( B ) < 1 \rho\left(\mathbf{B}\right)<1 ρ(B)<1

充分条件

如果 B \mathbf{B} B的某一种算子范数 ∥ B ∥ = q < 1 \|\mathbf{B}\|=q<1 B=q<1,则
(1)迭代法收敛
(2) ∥ x ∗ − x ( k ) ∥ ≤ q k ∥ x ∗ − x ( 0 ) ∥ \|\mathbf{x}^*-\mathbf{x}^{(k)}\|\le q^k\|\mathbf{x}^*-\mathbf{x}^{(0)}\| xx(k)qkxx(0)
(3) ∥ x ∗ − x ( k ) ∥ ≤ q 1 − q ∥ x ( k ) − x ( k − 1 ) ∥ \|\mathbf{x}^*-\mathbf{x}^{(k)}\|\le \frac{q}{1-q}\|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\| xx(k)1qqx(k)x(k1)
(4) ∥ x ∗ − x ( k ) ∥ ≤ q k 1 − q ∥ x ( 1 ) − x ( 0 ) ∥ \|\mathbf{x}^*-\mathbf{x}^{(k)}\|\le \frac{q^k}{1-q}\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\| xx(k)1qqkx(1)x(0)

证明:
(1)显然
(2) x ∗ − x ( k + 1 ) = B ( x ∗ − x ( k ) ) \mathbf{x}^*-\mathbf{x}^{(k+1)}=\mathbf{B}\left(\mathbf{x}^*-\mathbf{x}^{(k)}\right) xx(k+1)=B(xx(k))
x ( k + 1 ) − x ( k ) = B ( x ( k ) − x ( k − 1 ) ) \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}=\mathbf{B}\left(\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right) x(k+1)x(k)=B(x(k)x(k1))
于是
∥ x ∗ − x ( k + 1 ) ∥ ≤ q ∥ x ∗ − x ( k ) ∥ \|\mathbf{x}^*-\mathbf{x}^{(k+1)}\|\le q\|\mathbf{x}^*-\mathbf{x}^{(k)}\| xx(k+1)qxx(k)
∥ x ( k + 1 ) − x ( k ) ∥ ≤ q ∥ x ( k ) − x ( k − 1 ) ∥ \|\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\|\le q\|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\| x(k+1)x(k)qx(k)x(k1)
所以 ∥ x ∗ − x ( k ) ∥ ≤ q k ∥ x ∗ − x ( 0 ) ∥ \|\mathbf{x}^*-\mathbf{x}^{(k)}\|\le q^k\|\mathbf{x}^*-\mathbf{x}^{(0)}\| xx(k)qkxx(0)
(3)
∥ x ( k + 1 ) − x ( k ) ∥ = ∥ x ∗ − x ( k ) − ( x ∗ − x ( k + 1 ) ) ∥ ≥ ∥ x ∗ − x ( k ) ∥ − ∥ x ∗ − x ( k + 1 ) ∥ ≥ ( 1 − q ) ∥ x ∗ − x ( k ) ∥ \begin{aligned} \|\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\|&=\|\mathbf{x}^{*}-\mathbf{x}^{(k)}-\left(\mathbf{x}^*-\mathbf{x}^{(k+1)}\right)\|\\ &\ge \|\mathbf{x}^{*}-\mathbf{x}^{(k)}\|-\|\mathbf{x}^{*}-\mathbf{x}^{(k+1)}\|\\ &\ge \left(1-q\right) \|\mathbf{x}^{*}-\mathbf{x}^{(k)}\| \end{aligned} x(k+1)x(k)=xx(k)(xx(k+1))xx(k)xx(k+1)(1q)xx(k)

∥ x ∗ − x ( k ) ∥ ≤ 1 1 − q ∥ x ( k + 1 ) − x ( k ) ∥ ≤ q 1 − q ∥ x ( k ) − x ( k − 1 ) ∥ \|\mathbf{x}^{*}-\mathbf{x}^{(k)}\|\le\frac{1}{1-q} \|\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\|\le \frac{q}{1-q}\|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\| xx(k)1q1x(k+1)x(k)1qqx(k)x(k1)
(4)反复使用(3)

对称下的收敛

一下没找到,再说吧

Jacobi迭代

A = D − L − U \mathbf{A}=\mathbf{D}-\mathbf{L}-\mathbf{U} A=DLU
其中
D = ( a 11 a 22 ⋱ a n n ) , L = ( 0 − a 21 0 ⋮ ⋮ ⋱ − a n − 1 , 1 − a n − 1 , 2 ⋯ 0 − a n 1 − a n 2 ⋯ − a n , n − 1 0 ) , U = ( 0 − a 12 ⋯ − a 1 , n − 1 , − a 1 n 0 ⋯ − a 2 , n − 1 − a 2 n ⋱ ⋮ ⋮ 0 − a n − 1 , n 0 ) \mathbf{D}=\begin{pmatrix} a_{11}&&&\\ &a_{22}&&\\ &&\ddots&\\ &&&a_{nn} \end{pmatrix},\mathbf{L}=\begin{pmatrix} 0&&&&\\ -a_{21}&0&&&\\ \vdots&\vdots&\ddots&&\\ -a_{n-1,1}&-a_{n-1,2}&\cdots&0&\\ -a_{n1}&-a_{n2}&\cdots&-a_{n,n-1}&0\\ \end{pmatrix},\mathbf{U}=\begin{pmatrix} 0&-a_{12}&\cdots&-a_{1,n-1},&-a_{1n}\\ &0&\cdots&-a_{2,n-1}&-a_{2n}\\ &&\ddots&\vdots&\vdots\\ &&&0&-a_{n-1,n}\\ &&&&0\\ \end{pmatrix} D= a11a22ann ,L= 0a21an1,1an10an1,2an20an,n10 ,U= 0a120a1,n1,a2,n10a1na2nan1,n0

a i i ≠ 0 ( i = 1 , 2 , ⋯   , n ) a_{ii}\neq 0\left(i=1,2,\cdots,n\right) aii=0(i=1,2,,n),选取 M = D , A = D − N \mathbf{M}=\mathbf{D},\mathbf{A}=\mathbf{D}-\mathbf{N} M=D,A=DN

{ x ( 0 ) 初始向量 x ( k + 1 ) = B x ( k ) + f k = 0 , 1 , ⋯ \begin{cases} \mathbf{x}^{(0)}&\text{初始向量}\\ \mathbf{x}^{(k+1)}=\mathbf{B}\mathbf{x}^{(k)}+\mathbf{f}&k=0,1,\cdots \end{cases} {x(0)x(k+1)=Bx(k)+f初始向量k=0,1,
其中 B = I − D − 1 A = D − 1 ( L + U ) = J , f = D − 1 b \mathbf{B}=\mathbf{I}-\mathbf{D}^{-1}\mathbf{A}=\mathbf{D}^{-1}\left(\mathbf{L}+\mathbf{U}\right)=\mathbf{J},\mathbf{f}=\mathbf{D}^{-1}\mathbf{b} B=ID1A=D1(L+U)=J,f=D1b
J \mathbf{J} J为解 A x = b \mathbf{Ax}=\mathbf{b} Ax=b的Jacobi迭代法的迭代矩阵
由迭代公式
D x ( k + 1 ) = ( L + U ) x ( k ) + b \mathbf{D}\mathbf{x}^{(k+1)}=\left(\mathbf{L}+\mathbf{U}\right)\mathbf{x}^{(k)}+\mathbf{b} Dx(k+1)=(L+U)x(k)+b
或者
a i i x i ( k + 1 ) = − ∑ j = 1 i − 1 a i j x j ( k ) − ∑ j = i + 1 n a i j x j ( k ) + b i , i = 1 , 2 , ⋯ n a_{ii}x_i^{(k+1)}=-\sum_{j=1}^{i-1}a_{ij}x_j^{(k)}-\sum_{j=i+1}^{n}a_{ij}x_j^{(k)}+b_i,\quad i=1,2,\cdots n aiixi(k+1)=j=1i1aijxj(k)j=i+1naijxj(k)+bi,i=1,2,n
于是,计算公式为
x i ( k + 1 ) = b i − ∑ j = 1 j ≠ i n a i j x j ( k ) a i i x_i^{(k+1)}=\frac{b_i-\sum\limits_{j=1\atop j\neq i}^{n}a_{ij}x_j^{(k)}}{a_{ii}} xi(k+1)=aiibij=ij=1naijxj(k)
或者
x ( k + 1 ) = D − 1 ( L + U ) x ( k ) + D − 1 b \mathbf{x}^{(k+1)}=\mathbf{D}^{-1}\left(\mathbf{L}+\mathbf{U}\right)\mathbf{x}^{(k)}+\mathbf{D}^{-1}\mathbf{b} x(k+1)=D1(L+U)x(k)+D1b

收敛性

对角占优矩阵

(1)若 A \mathbf{A} A为严格对角占优阵,则Jacobi迭代收敛
(2)若 A \mathbf{A} A为不可约弱对角占优矩阵,则Jacobi迭代收敛
证明:
显然 a i i ≠ 0 a_{ii}\neq 0 aii=0
(1)设 A \mathbf{A} A为严格对角占有矩阵
J = D − 1 ( L + U ) \mathbf{J}=\mathbf{D}^{-1}\left(\mathbf{L}+\mathbf{U}\right) J=D1(L+U)
∣ λ I − J ∣ = ∣ λ I − D − 1 ( L + U ) ∣ = ∣ D ∣ ∣ λ D − ( L + U ) ∣ \left|\lambda \mathbf{I}-\mathbf{J}\right|=\left|\lambda \mathbf{I}-\mathbf{D}^{-1}\left(\mathbf{L}+\mathbf{U}\right)\right|=\left|\mathbf{D}\right|\left|\lambda\mathbf{D}-\left(\mathbf{L}+\mathbf{U}\right)\right| λIJ= λID1(L+U) =DλD(L+U)
∣ D ∣ ≠ 0 \left|\mathbf{D}\right|\neq 0 D=0
∣ λ ∣ ≥ 1 \left|\lambda\right|\ge 1 λ1

C = λ D − ( L + U ) = ( λ a 11 a 12 ⋯ a 1 n a 21 λ a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ λ a n n ) \mathbf{C}=\lambda\mathbf{D}-\left(\mathbf{L}+\mathbf{U}\right)=\begin{pmatrix} \lambda a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&\lambda a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\cdots&\lambda a_{nn} \end{pmatrix} C=λD(L+U)= λa11a21an1a12λa22an2a1na2nλann
∣ c i i ∣ = ∣ λ ∣ ∣ a i i ∣ > ∣ λ ∣ ∑ j = 1 j ≠ i n ∣ a i j ∣ ≥ ∑ j = 1 j ≠ i n ∣ a i j ∣ = ∑ j = 1 j ≠ i n ∣ c i j ∣ \begin{aligned} \left|c_{ii}\right|&=\left|\lambda\right|\left|a_{ii}\right|\\ &> \left|\lambda\right|\sum_{j=1\atop j\neq i}^{n}\left|a_{ij}\right|\\ &\ge \sum_{j=1\atop j\neq i}^{n}\left|a_{ij}\right|\\ &=\sum_{j=1\atop j\neq i}^{n}\left|c_{ij}\right|\\ \end{aligned} cii=λaii>λj=ij=1naijj=ij=1naij=j=ij=1ncij
所以 C \mathbf{C} C也是对角占优矩阵,由对角占优定理, ∣ λ D − ( L + U ) ∣ = 0 \left|\lambda\mathbf{D}-\left(\mathbf{L}+\mathbf{U}\right)\right|=0 λD(L+U)=0
所以 ∣ λ ∣ < 1 \left|\lambda\right|< 1 λ<1,即 ρ ( J ) < 1 \rho\left(\mathbf{J}\right)<1 ρ(J)<1,收敛
(2)与上面的证明类似,也可以证明 C \mathbf{C} C是不可约弱对角占优矩阵,然后就收敛了

充要条件

A \mathbf{A} A对称,且 a i i > 0 a_{ii}>0 aii>0,则收敛的充要条件为 A , 2 D − A ≻ 0 \mathbf{A},2\mathbf{D}-\mathbf{A}\succ 0 A,2DA0

证明:
因为 a i i > 0 a_{ii}>0 aii>0,所以 D ≻ 0 \mathbf{D}\succ 0 D0
B = I − D − 1 A = D − 1 2 ( I − D − 1 2 A D − 1 2 ) D 1 2 ⇒ B ∼ I − D − 1 2 A D − 1 2 \mathbf{B}=\mathbf{I}-\mathbf{D}^{-1}\mathbf{A}=\mathbf{D}^{-\frac{1}{2}}\left(\mathbf{I}-\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}\right)\mathbf{D}^{\frac{1}{2}}\Rightarrow \mathbf{B}\sim \mathbf{I}-\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}} B=ID1A=D21(ID21AD21)D21BID21AD21

必要性:
D − 1 2 A D − 1 2 \mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}} D21AD21的特征值为 μ \mu μ,则 B \mathbf{B} B的特征值为 1 − μ 1-\mu 1μ
因为 ρ ( B ) < 1 \rho\left(\mathbf{B}\right)<1 ρ(B)<1,所以 μ ∈ ( 0 , 2 ) \mu\in \left(0,2\right) μ(0,2)
对于 ∀ x ≠ 0 \forall \mathbf{x}\neq \mathbf{0} x=0,
x T D − 1 2 A D − 1 2 x = ( D − 1 2 x ) T A ( D − 1 2 x ) > 0 ⇒ A ≻ 0 \mathbf{x}^T\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}\mathbf{x}=\left(\mathbf{D}^{-\frac{1}{2}}\mathbf{x}\right)^T\mathbf{A}\left(\mathbf{D}^{-\frac{1}{2}}\mathbf{x}\right)>0\Rightarrow \mathbf{A}\succ 0 xTD21AD21x=(D21x)TA(D21x)>0A0
2 D − A = D 1 2 ( 2 I − D − 1 2 A D − 1 2 ) D 1 2 ⇒ 2 D − A ∼ 2 I − D − 1 2 A D − 1 2 ⇒ 2 D − A ≻ 0 2\mathbf{D}-\mathbf{A}=\mathbf{D}^{\frac{1}{2}}\left( 2\mathbf{I}-\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}\right)\mathbf{D}^{\frac{1}{2}}\Rightarrow 2\mathbf{D}-\mathbf{A}\sim 2\mathbf{I}-\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}\Rightarrow 2\mathbf{D}-\mathbf{A}\succ 0 2DA=D21(2ID21AD21)D212DA2ID21AD212DA0

充分性:
A ≻ 0 ⇒ D − 1 2 A D − 1 2 ≻ 0 \mathbf{A}\succ0\Rightarrow \mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}\succ 0 A0D21AD210
所以 I − D − 1 2 A D − 1 2 \mathbf{I}-\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}} ID21AD21的特征值小于1
所以 B \mathbf{B} B的特征值也小于1
− B = − D − 1 2 ( I − D − 1 2 A D − 1 2 ) D 1 2 = D − 1 2 ( I − D − 1 2 ( 2 D − A ) D − 1 2 ) D 1 2 \begin{aligned} -\mathbf{B} &=- \mathbf{D}^{-\frac{1}{2}}\left(\mathbf{I}-\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}\right) \mathbf{D}^{\frac{1}{2}}\\ &=\mathbf{D}^{-\frac{1}{2}}\left(\mathbf{I}-\mathbf{D}^{-\frac{1}{2}}\left(2\mathbf{D}-\mathbf{A}\right)\mathbf{D}^{-\frac{1}{2}}\right) \mathbf{D}^{\frac{1}{2}}\\ \end{aligned} B=D21(ID21AD21)D21=D21(ID21(2DA)D21)D21
其特征值小于1(没看懂),所以 ρ ( B ) < 1 \rho\left(\mathbf{B}\right)<1 ρ(B)<1,收敛

Gauss-Seidel迭代法

M = D − L \mathbf{M}=\mathbf{D}-\mathbf{L} M=DL(下三角矩阵) A = M − N \mathbf{A}=\mathbf{M}-\mathbf{N} A=MN于是
{ x ( 0 ) 初始向量 x ( k + 1 ) = B x ( k ) + f k = 0 , 1 , ⋯ \begin{cases} \mathbf{x}^{(0)}&\text{初始向量}\\ \mathbf{x}^{(k+1)}=\mathbf{B}\mathbf{x}^{(k)}+\mathbf{f}&k=0,1,\cdots \end{cases} {x(0)x(k+1)=Bx(k)+f初始向量k=0,1,
其中 B = I − ( D − L ) − 1 A = ( D − L ) − 1 U = G , f = ( D − L ) − 1 b \mathbf{B}=\mathbf{I}-\left(\mathbf{D}-\mathbf{L}\right)^{-1}\mathbf{A}=\left(\mathbf{D}-\mathbf{L}\right)^{-1}\mathbf{U}=\mathbf{G},\mathbf{f}=\left(\mathbf{D}-\mathbf{L}\right)^{-1}\mathbf{b} B=I(DL)1A=(DL)1U=G,f=(DL)1b
G \mathbf{G} G为解 A x = b \mathbf{Ax}=\mathbf{b} Ax=b的Gauss-Seidel迭代法的迭代矩阵
( D − L ) x ( k + 1 ) = U x ( k ) + b \left(\mathbf{D}-\mathbf{L}\right)\mathbf{x}^{(k+1)}=\mathbf{U}\mathbf{x}^{(k)}+\mathbf{b} (DL)x(k+1)=Ux(k)+b
或者
D x ( k + 1 ) = L x ( k + 1 ) + U x ( k ) + b \mathbf{D}\mathbf{x}^{(k+1)}=\mathbf{L}\mathbf{x}^{(k+1)}+\mathbf{U}\mathbf{x}^{(k)}+\mathbf{b} Dx(k+1)=Lx(k+1)+Ux(k)+b

a i i x i ( k + 1 ) = b i − ∑ j = 1 i − 1 a i j x j ( k + 1 ) − ∑ j = i + 1 n a i j x j ( k ) , i = 1 , 2 , ⋯   , n a_{ii}x_i^{(k+1)}=b_i-\sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}-\sum_{j=i+1}^{n}a_{ij}x_j^{(k)},\quad i=1,2,\cdots,n aiixi(k+1)=bij=1i1aijxj(k+1)j=i+1naijxj(k),i=1,2,,n
所以计算公式为
x i ( k + 1 ) = b i − ∑ j = 1 i − 1 a i j x j ( k + 1 ) − ∑ j = i + 1 n a i j x j ( k ) a i i x_i^{(k+1)}=\frac{b_i-\sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}-\sum_{j=i+1}^{n}a_{ij}x_j^{(k)}}{a_{ii}} xi(k+1)=aiibij=1i1aijxj(k+1)j=i+1naijxj(k)

收敛性

对角占优矩阵

(1)若 A \mathbf{A} A为严格对角占优阵,则Gauss-Seidel迭代法收敛
(2)若 A \mathbf{A} A为不可约弱对角占优矩阵,则Gauss-Seidel迭代法收敛
证明:
显然 a i i ≠ 0 a_{ii}\neq 0 aii=0
(1)设 A \mathbf{A} A为严格对角占有矩阵
G = ( D − L ) − 1 U \mathbf{G}=\left(\mathbf{D}-\mathbf{L}\right)^{-1}\mathbf{U} G=(DL)1U
∣ λ I − G ∣ = ∣ λ I − ( D − L ) − 1 U ∣ = ∣ ( D − L ) − 1 ∣ ∣ λ ( D − L ) − U ∣ \left|\lambda \mathbf{I}-\mathbf{G}\right|=\left|\lambda \mathbf{I}-\left(\mathbf{D}-\mathbf{L}\right)^{-1}\mathbf{U}\right|=\left|\left(\mathbf{D}-\mathbf{L}\right)^{-1}\right|\left|\lambda\left(\mathbf{D}-\mathbf{L}\right)-\mathbf{U}\right| λIG= λI(DL)1U = (DL)1 λ(DL)U
∣ ( D − L ) − 1 ∣ ≠ 0 \left|\left(\mathbf{D}-\mathbf{L}\right)^{-1}\right|\neq 0 (DL)1 =0
∣ λ ∣ ≥ 1 \left|\lambda\right|\ge 1 λ1

C = λ ( D − L ) − U = ( λ a 11 a 12 ⋯ a 1 n λ a 21 λ a 22 ⋯ a 2 n ⋮ ⋮ ⋮ λ a n 1 λ a n 2 ⋯ λ a n n ) \mathbf{C}=\lambda\left(\mathbf{D}-\mathbf{L}\right)-\mathbf{U}=\begin{pmatrix} \lambda a_{11}&a_{12}&\cdots&a_{1n}\\ \lambda a_{21}& \lambda a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ \lambda a_{n1}&\lambda a_{n2}&\cdots&\lambda a_{nn} \end{pmatrix} C=λ(DL)U= λa11λa21λan1a12λa22λan2a1na2nλann
∣ c i i ∣ = ∣ λ ∣ ∣ a i i ∣ > ∣ λ ∣ ( ∑ j = 1 i − 1 ∣ a i i ∣ + ∑ j = i + 1 n ∣ a i i ∣ ) = ∣ λ ∣ ∑ j = 1 i − 1 ∣ a i i ∣ + ∣ λ ∣ ∑ j = i + 1 n ∣ a i i ∣ ≥ ∑ j = 1 i − 1 ∣ λ a i i ∣ + ∑ j = i + 1 n ∣ a i i ∣ = ∑ j = 1 j ≠ i n ∣ c i j ∣ \begin{aligned} \left|c_{ii}\right|&=\left|\lambda\right|\left|a_{ii}\right|\\ &> \left|\lambda\right|\left(\sum_{j=1}^{i-1}\left|a_{ii}\right|+\sum_{j=i+1}^{n}\left|a_{ii}\right|\right)\\ &= \left|\lambda\right|\sum_{j=1}^{i-1}\left|a_{ii}\right|+\left|\lambda\right|\sum_{j=i+1}^{n}\left|a_{ii}\right|\\ &\ge \sum_{j=1}^{i-1}\left|\lambda a_{ii}\right|+\sum_{j=i+1}^{n}\left|a_{ii}\right|\\ &=\sum_{j=1\atop j\neq i}^{n}\left|c_{ij}\right|\\ \end{aligned} cii=λaii>λ(j=1i1aii+j=i+1naii)=λj=1i1aii+λj=i+1naiij=1i1λaii+j=i+1naii=j=ij=1ncij
所以 C \mathbf{C} C也是对角占优矩阵,由对角占优定理, ∣ λ ( D − L ) − U ∣ = 0 \left|\lambda\left(\mathbf{D}-\mathbf{L}\right)-\mathbf{U}\right|=0 λ(DL)U=0
所以 ∣ λ ∣ < 1 \left|\lambda\right|< 1 λ<1,即 ρ ( G ) < 1 \rho\left(\mathbf{G}\right)<1 ρ(G)<1,收敛
(2)与上面的证明类似,也可以证明 C \mathbf{C} C是不可约弱对角占优矩阵,然后就收敛了

对称正定

A \mathbf{A} A对称,若 A ≻ 0 \mathbf{A}\succ 0 A0,则收敛
证明:
A = D − L − L T \mathbf{A}=\mathbf{D}-\mathbf{L}-\mathbf{L}^T A=DLLT
G = ( D − L ) − 1 L T \mathbf{G}=\left(\mathbf{D}-\mathbf{L}\right)^{-1}\mathbf{L}^T G=(DL)1LT
( D − L ) − 1 L T x = λ x ⇒ L T x = λ ( D − L ) x ⇒ x T L T x = λ x T ( D − L ) x \left(\mathbf{D}-\mathbf{L}\right)^{-1}\mathbf{L}^T \mathbf{x}=\lambda \mathbf{x}\Rightarrow \mathbf{L}^T\mathbf{x}=\lambda \left(\mathbf{D}-\mathbf{L}\right)\mathbf{x}\Rightarrow \mathbf{x}^T\mathbf{L}^T\mathbf{x}=\lambda \mathbf{x}^T\left(\mathbf{D}-\mathbf{L}\right)\mathbf{x} (DL)1LTx=λxLTx=λ(DL)xxTLTx=λxT(DL)x
A ≻ 0 ⇒ p = x T D x > 0 \mathbf{A}\succ 0\Rightarrow p=\mathbf{x}^T\mathbf{D}\mathbf{x}>0 A0p=xTDx>0
a = x T L T x a=\mathbf{x}^T\mathbf{L}^T\mathbf{x} a=xTLTx
x T A x = x T ( D − L − L T ) x = p − 2 a > 0 \mathbf{x}^T\mathbf{A}\mathbf{x}=\mathbf{x}^T\left(\mathbf{D}-\mathbf{L}-\mathbf{L}^T\right)\mathbf{x}=p-2a>0 xTAx=xT(DLLT)x=p2a>0
( p − a ) 2 = p 2 − 2 a p + a 2 = p ( p − 2 a ) + a 2 \left(p-a\right)^2=p^2-2ap+a^2=p\left(p-2a\right)+a^2 (pa)2=p22ap+a2=p(p2a)+a2
λ = x T L T x x T ( D − L ) x = a p − a \lambda =\frac{\mathbf{x}^T\mathbf{L}^T\mathbf{x}}{\mathbf{x}^T\left(\mathbf{D}-\mathbf{L}\right)\mathbf{x}}=\frac{a}{p-a} λ=xT(DL)xxTLTx=paa
λ 2 = a 2 p 2 − 2 p a + a 2 = a 2 p ( p − 2 a ) + a 2 < 1 \lambda^2=\frac{a^2}{p^2-2pa+a^2}=\frac{a^2}{p\left(p-2a\right)+a^2}<1 λ2=p22pa+a2a2=p(p2a)+a2a2<1
所以收敛

SOR迭代

M = 1 ω ( D − ω L ) \mathbf{M}=\frac{1}{\omega}\left(\mathbf{D}-\omega\mathbf{L}\right) M=ω1(DωL)
其中 ω > 0 \omega>0 ω>0为可选的松弛因子
L ω = I − ω ( D − ω L ) − 1 A = ( D − ω L ) − 1 ( ( 1 − ω ) D + ω U ) \mathbf{L}_{\omega}=\mathbf{I}-\omega\left(\mathbf{D}-\omega\mathbf{L}\right)^{-1}\mathbf{A}=\left(\mathbf{D}-\omega\mathbf{L}\right)^{-1}\left(\left(1-\omega\right)\mathbf{D}+\omega\mathbf{U}\right) Lω=Iω(DωL)1A=(DωL)1((1ω)D+ωU)
迭代为
x ( k + 1 ) = L ω x ( k ) + f \mathbf{x}^{(k+1)}=\mathbf{L}_{\omega}\mathbf{x}^{(k)}+\mathbf{f} x(k+1)=Lωx(k)+f
其中 L ω = ( D − ω L ) − 1 ( ( 1 − ω ) D + ω U ) , f = ω ( D − ω L ) − 1 b \mathbf{L}_{\omega}=\left(\mathbf{D}-\omega\mathbf{L}\right)^{-1}\left(\left(1-\omega\right)\mathbf{D}+\omega\mathbf{U}\right),\mathbf{f}=\omega\left(\mathbf{D}-\omega\mathbf{L}\right)^{-1}\mathbf{b} Lω=(DωL)1((1ω)D+ωU),f=ω(DωL)1b

收敛条件

必要条件

若SOR迭代收敛,则 0 < ω < 2 0<\omega<2 0<ω<2

证明:
ρ ( L ω ) < 1 \rho\left(L_{\omega}\right)<1 ρ(Lω)<1
∣ ∣ L ω ∣ ∣ = ∣ λ 1 ⋯ λ n ∣ ≤ ( ρ ( L ω ) ) n \left|\left|\mathbf{L}_{\omega}\right|\right|=\left|\lambda_1\cdots\lambda_n\right|\le\left(\rho\left(\mathbf{L}_{\omega}\right)\right)^n Lω=λ1λn(ρ(Lω))n
所以
∣ ∣ L ω ∣ ∣ 1 n ≤ ρ ( L ω ) < 1 \left|\left|\mathbf{L}_{\omega}\right|\right|^{\frac{1}{n}}\le \rho\left(L_{\omega}\right)<1 Lωn1ρ(Lω)<1
∣ ∣ L ω ∣ ∣ = ∣ D − ω L ∣ ∣ ( 1 − ω ) D + ω U ∣ = ∏ i = 1 n 1 a i i ∏ i = 1 n ( 1 − ω ) a i i = ( 1 − ω ) n \left|\left|\mathbf{L}_{\omega}\right|\right|=\left|\mathbf{D}-\omega\mathbf{L}\right|\left|\left(1-\omega\right)\mathbf{D}+\omega\mathbf{U}\right|=\prod_{i=1}^n\frac{1}{a_{ii}}\prod_{i=1}^n\left(1-\omega\right)a_{ii}=\left(1-\omega\right)^n Lω=DωL(1ω)D+ωU=i=1naii1i=1n(1ω)aii=(1ω)n
从而
∣ ∣ L ω ∣ ∣ 1 n = ∣ 1 − ω ∣ ≤ ρ ( L ω ) < 1 ⇒ 0 < ω < 2 \left|\left|\mathbf{L}_{\omega}\right|\right|^{\frac{1}{n}}=\left|1-\omega\right|\le \rho\left(L_{\omega}\right)<1\Rightarrow 0<\omega <2 Lωn1=1ωρ(Lω)<10<ω<2

充分条件1

如果 A \mathbf{A} A对称正定, 0 < ω < 2 0<\omega<2 0<ω<2,则收敛

充分条件2

如果 A \mathbf{A} A为严格对角占优矩阵或弱对角占优不可约矩阵, 0 < ω ≤ 1 0<\omega\le 1 0<ω1,则收敛

最佳松弛因子

min ⁡ 0 < ω < 2 ρ ( L ω ) = ρ ( L ω o p t ) \min\limits_{0<\omega<2}\rho\left(\mathbf{L}_\omega\right)=\rho\left(\mathbf{L}_{\omega_{opt}}\right) 0<ω<2minρ(Lω)=ρ(Lωopt)
ω o p t = 2 1 + 1 − ρ ( J ) 2 \omega_{opt}=\frac{2}{1+\sqrt{1-\rho\left(\mathbf{J}\right)^2}} ωopt=1+1ρ(J)2 2
其中 J = D − 1 ( L + U ) \mathbf{J}=\mathbf{D}^{-1}\left(\mathbf{L}+\mathbf{U}\right) J=D1(L+U)

SSOR迭代法

M = 1 ω ( 2 − ω ) ( D − ω L ) D − 1 ( D − ω U ) \mathbf{M}=\frac{1}{\omega\left(2-\omega\right)}\left(\mathbf{D}-\omega\mathbf{L}\right)\mathbf{D}^{-1}\left(\mathbf{D}-\omega \mathbf{U}\right) M=ω(2ω)1(DωL)D1(DωU)

参考:
数值分析 第五版 (李庆扬 王能超 易大义) (z-lib.org)
数值计算原理

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值