线性方程组的迭代解法

线性方程组的迭代解法

迭代法的基本流程

  1. 将矩阵方程组 A x ‾ = b ‾ A\overline{x}=\overline{b} Ax=b等价改写成 x ‾ = B x ‾ + f ‾ \overline{x}=B\overline{x}+\overline{f} x=Bx+f
  2. 得到迭代格式 x ( k + 1 ) ‾ = B x ( k ) ‾ + f ‾ \overline{x^{(k+1)}}=B\overline{x^{(k)}}+\overline{f} x(k+1)=Bx(k)+f
  3. 得到迭代序列 { x ( k ) } \{x^{(k)}\} {x(k)}存在机型那么迭代序列收敛,且收敛值就是方程组的解

雅可比迭代法

x ( k + 1 ) = D − 1 ( L + U ) x ( k ) + D − 1 b x i ( k + 1 ) = x i ( k ) + 1 a i i ( b i − ∑ j = 1 n a i j x j ( k ) ) D = d i a g ( a 11 , a 12 , ⋯   , a n n ) x^{(k+1)}=D^{-1}(L+U)x^{(k)}+D^{-1}b \\x_i^{(k+1)}=x_i^(k)+\frac{1}{a_{ii}}(b_i-\sum_{j=1}^na_{ij}x_j^{(k)}) \\D=diag{(a_{11},a_{12},\cdots,a_{nn})} x(k+1)=D1(L+U)x(k)+D1bxi(k+1)=xi(k)+aii1(bij=1naijxj(k))D=diag(a11,a12,,ann)

D D D就是原系数矩阵只保持主对角元素
L = ( 0 0 ⋯ 0 − a 21 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ − a n 1 − a n 2 ⋯ 0 ) U = ( 0 − a 21 ⋯ − a 1 n 0 0 ⋯ − a 2 n ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 0 ) L=\begin{pmatrix} 0&0&\cdots&0\\ -a_{21}&0&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ -a_{n1}&-a_{n2}&\cdots&0 \end{pmatrix}\\ U=\begin{pmatrix} 0&-a_{21}&\cdots&-a_{1n}\\ 0&0&\cdots&-a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&0 \end{pmatrix}\\ L=0a21an100an2000U=000a2100a1na2n0

高斯赛德尔迭代法

迭 代 矩 阵 的 基 本 形 式 x ‾ ( k + 1 ) = ( D − L ) − 1 U x ‾ ( k ) + ( D − L ) − 1 b ‾ x n ( k + 1 ) = 1 a n n ( − a n 1 x 1 ( k + 1 ) − a n 2 x 2 ( k + 1 ) − ⋯ − a n n − 1 x n − 1 k + 1 + b n ) 迭代矩阵的基本形式 \quad \overline{x}^{(k+1)}=(D-L)^{-1}U\overline{x}^{(k)}+(D-L)^{-1}\overline{b}\\ \\x_n^{(k+1)}=\frac{1}{a_{nn}}(-a_{n1}x_1^{(k+1)}-a_{n2}x_2^{(k+1)}-\cdots-a_{nn-1}x_{n-1}^{k+1}+b_n) x(k+1)=(DL)1Ux(k)+(DL)1bxn(k+1)=ann1(an1x1(k+1)an2x2(k+1)ann1xn1k+1+bn)

迭代法的收敛性

迭代法的改善

剩余向量 r r r,修正向量 z z z的基本定义
r = b − A x ‾ A z = r r=b-A\overline{x} \\Az=r r=bAxAz=r

迭代步骤
  1. 求 出 A x = b 的 近 似 解 x ( 1 ) 求出Ax=b的近似解x^{(1)} Ax=bx(1)

  2. 求 出 修 正 向 量 z ( 1 ) , r ( 1 ) = b − A x ( 1 ) , A z ( 1 ) = r ( 1 ) 求出修正向量z^{(1)},r^{(1)}=b-Ax^{(1)},Az^{(1)}=r^{(1)} z(1),r(1)=bAx(1),Az(1)=r(1)

  3. 将 修 正 向 量 z ( 1 ) 带 入 x ( 1 ) 修 正 x ( 2 ) = x ( 1 ) + z 将修正向量z^{(1)}带入x^{(1)}修正x^{(2)}=x^{(1)}+z z(1)x(1)x(2)=x(1)+z

重复2,3步骤直至精度达到要求

收敛的条件

已知 x x x的迭代式 x ( k + 1 ) = B x ( k ) + f x^{(k+1)}=Bx^{(k)}+f x(k+1)=Bx(k)+f

当迭代矩阵 B B B满足 lim ⁡ k → 0 B k = 0 \lim_{k\to0}B^{k}=0 limk0Bk=0的时候迭代矩阵收敛

矩阵收敛极限
矩阵收敛定义

=>当矩阵 A A A中的每个元素 a i j a_{ij} aij都满足 lim ⁡ k → ∞ a i j ( k ) = a j i \lim_{k\to\infty}a_{ij}^{(k)}=a_{ji} limkaij(k)=aji,矩阵 A A A收敛

矩阵收敛和范数之间的关系

=>当矩阵 A k A_{k} Ak收敛 A A A那么他满足
lim ⁡ k → ∞ ∣ ∣ A k − A ∣ ∣ = 0 \lim_{k\to\infty}||A_k-A||=0 klimAkA=0
​ ||A||表示任意的矩阵范数都成立,矩阵范数等价定理

谱半径 ρ \rho ρ的定义和性质

谱半径:矩阵的谱半径为矩阵绝对值最大的特征根
ρ ( A ) = max ⁡ 1 ≤ i ≤ n ∣ λ i ∣ \rho(A)=\max_{1\leq{i}\leq{n}}|\lambda_i| ρ(A)=1inmaxλi

矩阵极限等于0的充要条件

ρ ( A ) < 1    ⟺    lim ⁡ k → 0 A ( k ) = 0 \rho(A)<1\iff\lim_{k\to0}A^{(k)}=0 ρ(A)<1k0limA(k)=0

矩阵迭代收敛条件

ρ ( B ) < 1 雅 可 比 迭 代 法 ρ ( D − 1 ( L + U ) ) < 1 高 斯 赛 德 尔 迭 代 法 ρ ( ( D − L ) − 1 U ) < 1 \rho(B)<1 \\雅可比迭代法\quad\rho{(D^{-1}(L+U))}<1 \\高斯赛德尔迭代法\quad\rho{((D-L)^{-1}U)}<1 ρ(B)<1ρ(D1(L+U))<1ρ((DL)1U)<1

ρ ( B ) \rho(B) ρ(B)越小收敛速度与越快

误差估计迭代法的收敛余项

已知: ∣ ∣ B ∣ ∣ = q < 1 ||B||=q<1 B=q<1

误差估计
$$

  1. ||\overline{x}*-\overline{x}{(k)}||\leq\frac{q}{1-q}||x{(k+1)}-x{(k)}||
    \2. ||\overline{x}*-\overline{x}{(k)}||\leq\frac{qk}{1-q}||x{(1)}-x^{(0)}||
    $$

q q q越小收敛速度越快

严格对角占优迭代矩阵收敛

对角占优

KaTeX parse error: Undefined control sequence: \ at position 119: …i}}^{n}|a_{ij}|\̲ ̲

对于对角线上的每个元素,都大于它所在行其余元素累加和

严格对角占优

A A A严格对角占优,那么雅可比高斯赛德尔迭代矩阵收敛

主次超松弛迭代法

x i ( k + 1 ) = x i ( k ) + ω r ( k + 1 ) a i i r i ( k + 1 ) = b i − ∑ j < i a i j x j ( k + 1 ) − ∑ j ≥ i a i j x j ( k ) x_i^{(k+1)}=x_i^{(k)}+\omega\frac{r^{(k+1)}}{a_{ii}} \\r_i^{(k+1)}=b_i-\sum_{j<i}a_{ij}x_j^{(k+1)}-\sum_{j\geq{i}}a_{ij}x_j^{(k)} xi(k+1)=xi(k)+ωaiir(k+1)ri(k+1)=bij<iaijxj(k+1)jiaijxj(k)

其中
低 松 弛 迭 代 0 < ω < 1 高 斯 赛 德 尔 迭 代 ω = 1 超 松 弛 迭 代 ω > 1 低松弛迭代\quad0<\omega<1\\ 高斯赛德尔迭代\quad\omega=1\\ 超松弛迭代\quad\omega\gt1 0<ω<1ω=1ω>1
将逐步松弛迭代法写
x ‾ k + 1 = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] x ‾ ( k ) + ( D − ω L − 1 ) ω b ‾ \overline{x}^{k+1}=(D-\omega{L})^{-1}[(1-\omega)D+\omega{U}]\overline{x}^{(k)}+(D-\omega{L}^{-1})\omega\overline{b} xk+1=(DωL)1[(1ω)D+ωU]x(k)+(DωL1)ωb
超松弛迭代法收敛

kahan必要条件

若A可逆,且 a i i ≠ 0 a_{ii}\neq0 aii=0从任意 x ‾ ( 0 ) \overline{x}^{(0)} x(0)出发收敛=> 0 < ω < 2 0<\omega<2 0<ω<2

充分条件

若A对称正定,且有 0 < ω < 2 0<\omega<2 0<ω<2,则 x ‾ ( 0 ) \overline{x}^{(0)} x(0)出发,超松弛迭代法都收敛

最佳松弛因子

若A为对称正定三角矩阵,雅可比迭代法和高斯赛德尔迭代法都收敛,且超松弛迭代法的最佳松弛因子为
ω = 2 1 + 1 − [ ρ ( B ) ] 2 \omega=\frac{2}{1+\sqrt{1-[\rho(B)]^2}} ω=1+1[ρ(B)]2 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值