领域自适应|对比学习 VS 对抗学习

在这里插入图片描述
对比学习 VS 对抗学习 - 小石不秃的文章 - 知乎

刚开始了解领域自适应学习的时候,不了解基于对比学习和基于对抗学习的两类领域自适应方法的侧重点,网上也没找到总结分析,现在想起来还是自己开一个帖子好了,方便后续回顾。
领域自适应问题:原始只用source domain数据训练的模型,对于target domain的数据识别效果很差,因为target domai和source domain之间存在领域偏移。对比学习和对抗学习均可用于解决领域偏移问题。

对比学习

对比学习是判别式自监督学习,侧重于通过对比正反两方面的实例来提取有意义的表征。它利用的假设是,在学习到的嵌入空间中,相似的实例应靠得更近,而不相似的实例应离得更远,目标是学习一个表示空间,其中来自同一类别的source domain和target domain的表示更加接近,而不同类别的表示保持距离较远。
Detect Rumors in Microblog Posts for Low-Resource Domains via Adversarial Contrastive Learning
以信息噪声对比估计(InfoNCE)损失函数为例,最大化不同领域正样本之间的一致性并最小化同一领域负样本之间的一致性。
<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值