刚开始了解领域自适应学习的时候,不了解基于对比学习和基于对抗学习的两类领域自适应方法的侧重点,网上也没找到总结分析,现在想起来还是自己开一个帖子好了,方便后续回顾。
领域自适应问题:原始只用source domain数据训练的模型,对于target domain的数据识别效果很差,因为target domai和source domain之间存在领域偏移。对比学习和对抗学习均可用于解决领域偏移问题。
对比学习
对比学习是判别式自监督学习,侧重于通过对比正反两方面的实例来提取有意义的表征。它利用的假设是,在学习到的嵌入空间中,相似的实例应靠得更近,而不相似的实例应离得更远,目标是学习一个表示空间,其中来自同一类别的source domain和target domain的表示更加接近,而不同类别的表示保持距离较远。
以信息噪声对比估计(InfoNCE)损失函数为例,最大化不同领域正样本之间的一致性并最小化同一领域负样本之间的一致性。
<