YOLOv3计算各类的AP及MAP

本文介绍如何使用Darknet框架的YOLOv3模型进行图像目标检测的批量测试,详细解释了如何配置测试集路径,运行检测并保存结果。同时,提供了使用Python脚本计算平均精度(MAP)的方法,包括解析检测结果、调用VOC评估脚本及展示各类别AP值。
摘要由CSDN通过智能技术生成

首先需要对测试集做批量测试,即需要将每个测试图像输入到模型中,得到测试结果。然后统计测试结果;

本文用的事darknet中valid接口函数,这里valid可以作为训练时候,使用验证集检测模型训练情况,这里使用valid对训练好的模型做测试;(即用来批量统计输入测试图像经过模型得到的结果)

看下源码detector.c中run_detector函数中valid接口用法

具体用法:

./darknet detector valid cfg/voc.data cfg/yolov3-voc-6.cfg yolov3-voc-6_final.weights -out ""

注意voc.data 中vailde改成测试集路径

数据集路径格式

测试结果默认保存在当前路径下的./results文件夹下,如果没有,新建;

输出测试图像数

vim bicycle.txt

             008153  0.005640    231.401428  410.399536  375.000000  490.319397

             按列,分别为:图像名称 | 置信度 | xmin,ymin,xmax,ymax

计算各类的MAP

python reval_voc_py3.py --year 2007 --classes data/coco-6.names --image_set test --voc_dir /home/nxt/xxx/darknet/VOCdevkit --output_dir results

部分输出结果:

 resultsEvaluating detections

VOC07 metric? Yes

devkit_path= /home/nxt/xx/darknet/VOCdevkit , year =  2007

!!! cachefile =  /home/nxt/xxx/darknet/VOCdevkit/annotations_cache/annots.pkl

AP for bicycle = 0.8458

!!! cachefile =  /home/nxt/xxx/darknet/VOCdevkit/annotations_cache/annots.pkl

AP for bus = 0.8877

!!! cachefile =  /home/nxt/xxx/darknet/VOCdevkit/annotations_cache/annots.pkl

AP for car = 0.8566

.....

reval_voc_py3.py非官方计算方法,从google了解,官方使用的MATALB的工具箱计算法,需自行了解,此处代码从github找到的,时间就有点忘,后期想起来,补从地址

# reval_voc_py3.py
# !/usr/bin/env python

# Adapt from ->
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
# <- Written by Yaping Sun

"""Reval = re-eval. Re-evaluate saved detections."""

import os, sys, argparse
import numpy as np
import _pickle as cPickle
#import cPickle

from voc_eval_py3 import voc_eval

def parse_args():
    """
    Parse input arguments
    """
    parser = argparse.ArgumentParser(description='Re-evaluate results')
    parser.add_argument('output_dir', nargs=1, help='results directory',
                        type=str)
    parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str)
    parser.add_argument('--year', dest='year', default='2017', type=str)
    parser.add_argument('--image_set', dest='image_set', default='test', type=str)

    parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str)

    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)

    args = parser.parse_args()
    return args

def get_voc_results_file_template(image_set, out_dir = 'results'):
    #filename = 'comp4_det_' + image_set + '_{:s}.txt'
    filename = '{:s}.txt'
    path = os.path.join(out_dir, filename)
    return path

def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'):
    annopath = os.path.join(
        devkit_path,
        'VOC' + year+'_test', # voc2007_test
        'Annotations',
        '{}.xml')
    imagesetfile = os.path.join(
        devkit_path,
        'VOC' + year+'_test',
        'ImageSets',
        'Main',
        image_set + '.txt')
    cachedir = os.path.join(devkit_path, 'annotations_cache')
    aps = []
    # The PASCAL VOC metric changed in 2010
    use_07_metric = True if int(year) < 2010 else False
    print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
    print('devkit_path=',devkit_path,', year = ',year)

    if not os.path.isdir(output_dir):
        os.mkdir(output_dir)
    for i, cls in enumerate(classes):
        if cls == '__background__':
            continue
        filename = get_voc_results_file_template(image_set).format(cls)
        rec, prec, ap = voc_eval(
            filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
            use_07_metric=use_07_metric)
        print('rec:', rec.shape)
        #np.savetxt('%s.txt',i, rec)
        print('prec:', prec.shape)
        #print(prec)
        aps += [ap]
        print('AP for {} = {:.4f}'.format(cls, ap))
        cls_prec = cls+'_prec' 
        np.savetxt(cls,rec)
        np.savetxt(cls_prec,prec)
        with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
            cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
    print('Mean AP = {:.4f}'.format(np.mean(aps)))
    print('~~~~~~~~')
    print('Results:')
    for ap in aps:
        print('{:.3f}'.format(ap))
    print('{:.3f}'.format(np.mean(aps)))
    print('~~~~~~~~')
    print('')
    print('--------------------------------------------------------------')
    print('Results computed with the **unofficial** Python eval code.')
    print('Results should be very close to the official MATLAB eval code.')
    print('-- Thanks, The Management')
    print('--------------------------------------------------------------')



if __name__ == '__main__':
    args = parse_args()  # input parameter

    output_dir = os.path.abspath(args.output_dir[0]) # output dir
    with open(args.class_file, 'r') as f:
        lines = f.readlines()

    classes = [t.strip('\n') for t in lines] # class names

    print('Evaluating detections')
    do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)

voc_eval.py代码原味python2这里我更为python3版本

#!/usr/bin/env python

# Adapt from ->
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
# <- Written by Yaping Sun

"""Reval = re-eval. Re-evaluate saved detections."""

import os, sys, argparse
import numpy as np
import _pickle as cPickle
#import cPickle

from voc_eval_py3 import voc_eval

def parse_args():
    """
    Parse input arguments
    """
    parser = argparse.ArgumentParser(description='Re-evaluate results')
    parser.add_argument('output_dir', nargs=1, help='results directory',
                        type=str)
    parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str)
    parser.add_argument('--year', dest='year', default='2017', type=str)
    parser.add_argument('--image_set', dest='image_set', default='test', type=str)

    parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str)

    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)

    args = parser.parse_args()
    return args

def get_voc_results_file_template(image_set, out_dir = 'results'):
    #filename = 'comp4_det_' + image_set + '_{:s}.txt'
    filename = '{:s}.txt'
    path = os.path.join(out_dir, filename)
    return path

def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'):
    annopath = os.path.join(
        devkit_path,
        'VOC' + year+'_test', # voc2007_test
        'Annotations',
        '{}.xml')
    imagesetfile = os.path.join(
        devkit_path,
        'VOC' + year+'_test',
        'ImageSets',
        'Main',
        image_set + '.txt')
    cachedir = os.path.join(devkit_path, 'annotations_cache')
    aps = []
    # The PASCAL VOC metric changed in 2010
    use_07_metric = True if int(year) < 2010 else False
    print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
    print('devkit_path=',devkit_path,', year = ',year)

    if not os.path.isdir(output_dir):
        os.mkdir(output_dir)
    for i, cls in enumerate(classes):
        if cls == '__background__':
            continue
        filename = get_voc_results_file_template(image_set).format(cls)
        rec, prec, ap = voc_eval(
            filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
            use_07_metric=use_07_metric)
        print('rec:', rec.shape)
        #np.savetxt('%s.txt',i, rec)
        print('prec:', prec.shape)
        #print(prec)
        aps += [ap]
        print('AP for {} = {:.4f}'.format(cls, ap))
        cls_prec = cls+'_prec' 
        np.savetxt(cls,rec)
        np.savetxt(cls_prec,prec)
        with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
            cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
    print('Mean AP = {:.4f}'.format(np.mean(aps)))
    print('~~~~~~~~')
    print('Results:')
    for ap in aps:
        print('{:.3f}'.format(ap))
    print('{:.3f}'.format(np.mean(aps)))
    print('~~~~~~~~')
    print('')
    print('--------------------------------------------------------------')
    print('Results computed with the **unofficial** Python eval code.')
    print('Results should be very close to the official MATLAB eval code.')
    print('-- Thanks, The Management')
    print('--------------------------------------------------------------')



if __name__ == '__main__':
    args = parse_args()  # input parameter

    output_dir = os.path.abspath(args.output_dir[0]) # output dir
    with open(args.class_file, 'r') as f:
        lines = f.readlines()

    classes = [t.strip('\n') for t in lines] # class names

    print('Evaluating detections')
    do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)

 

本人略菜,有问题请指出;

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值