深度可分离卷积(depthwise separable convolution)

深度可分离卷积是由depthwise(DW)逐通道卷积和pointwise(PW)逐点卷积两个部分结合起来,用来提取特征feature map

常规的卷积

在这里插入图片描述
如上图,对于一张5x5x3的图像进行常规操作的卷积,假设采用3x3大小的卷积核进行卷积,输出通道为4,则卷积核的shape为3x3x3x4,经过卷积后得到4个Feature Map。
该卷积层的参数个数N = 4 × 3 × 3 × 3 = 108个
计算量C= 3 x 3 x (5-2) x (5-2) x 3 x 4 = 972次

深度可分离卷积

  • 逐通道卷积

Depthwise Convolution的一个卷积核负责一个通道,一个通道只被一个卷积核卷积

在这里插入图片描述
如上图,对于一张5x5x3的图像进行卷积,假设采用3x3大小的卷积核进行卷积,卷积核的数量和输入通道数相同,即通道和卷积核一一对应,则卷积核的shape为3x3x3,经过卷积后得到3个Feature Map。
该卷积层的参数个数N = 3 × 3 × 3 = 27个
计算量C= 3 x 3 x (5-2) x (5-2) x 3 = 243次

Depthwise Convolution完成后的Feature map数量与输入层的通道数相同,无法扩展Feature map。而且这种运算对输入层的每个通道独立进行卷积运算,没有有效的利用不同通道在相同空间位置上的feature信息。因此需要Pointwise Convolution来将这些Feature map进行组合生成新的Feature map

  • 逐点卷积

Pointwise Convolution的运算与常规卷积运算非常相似,它的卷积核的尺寸为 1×1×M,M为上一层的通道数。所以这里的卷积运算会将上一步的map在深度方向上进行加权组合,生成新的Feature map。有几个卷积核就有几个输出Feature map

在这里插入图片描述
如上图,将逐通道卷积得到的Feature Map进行卷积,采用1x1x3大小的卷积核进行卷积,则卷积核的shape为1x1x3x4,经过卷积后得到4个Feature Map。
该卷积层的参数个数N = 1 × 1 × 3 x 4 = 12个
计算量C= 1 x 1 x 3 x 3 x 3 x 4 = 108次

对比

常规卷积操作:
参数量N=108
计算量S=972

深度可分离卷积操作:
参数量N=27+12=39
计算量S=243+108=351

相同的输入,同样是得到4张Feature map,Separable Convolution的参数个数是常规卷积的约1/3。因此,在参数量相同的前提下,采用Separable Convolution的神经网络层数可以做的更深。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 深度分离(Depthwise Separable Convolution)是一种卷方式,它将卷操作分为两步来进行:深度和点卷。其中,深度对于每个输入通道分别做卷,而点卷则将各个输入通道的卷结果按照权值线性组合。这样可以减少参数量,加速计算,并且能够在保持精度的前提下压缩模型。 ### 回答2: Depthwise separable convolution深度分离)是一种轻量级的卷操作,它可以有效降低模型的参数量和计算量,从而实现更加高效的模型训练和推理。 相比于传统的卷操作,depthwise separable convolution 由两个步骤构成:depthwise convolution深度)和pointwise convolution(逐点卷)。具体来说,先对输入的每个通道单独进行卷操作(即深度),然后再通过逐点卷来将各个通道的特征进行整合,最终得到输出结果。 对于一个用于目标识别的卷网络来说,depthwise separable convolution 的主要优势在于它能够显著减少网络中的参数量和计算量。由于在进行深度时,每个通道都是单独进行处理,所以会大幅降低计算量和计算时间。而逐点卷则可以有效压缩卷层的通道数,从而降低参数量和内存占用。 举个例子,假设对于一个输入大小为H×W×C的图像,原本需要使用大小为K×K×C×S的卷核来进行卷操作,其中S表示输出通道数目。那么使用 depthwise separable convolution 进行操作时,先使用大小为K×K×C的卷核进行深度(相当于使用了C个大小为K×K的卷核),然后通过大小为1×1×CS的卷核进行逐点卷。这样,在输出相同结果的情况下,参数量和计算量就能大幅降低,从而加速模型的训练和推理。 总之,depthwise separable convolution 是一种轻量级的卷操作,可以有效压缩模型的参数量和计算量,提高模型的计算效率。在目标识别等领域,可以作为一种强大的工具,用于设计更加高效的卷神经网络。 ### 回答3: Depthwise separable convolution深度分离)是一种卷神经网络(CNN)中用于减少网络参数个数和计算量的结构。它是由谷歌的研究者提出的一种卷结构,并在MobileNet中得到广泛应用。 普通的卷神经网络是由卷层、池化层和全连接层组成。其中,卷层是网络中最消耗时间和空间的部分,需要大量的计算资源。深度分离是一种卷结构,通过分离的过程,将卷操作分为两个部分:深度和逐点卷。 首先,深度只在每个输入通道上进行卷操作,而不是在所有输入通道上同时进行。这样可以减少卷核的数量。其次,逐点卷使用1x1的卷核,对每个通道分别进行卷操作。这可以将通道之间的相互影响降到最低。 因为这种分离深度分离可以明显降低计算量和模型参数,能够在保证模型精度的情况下,让模型具有更小的体和更高的运行速度。相比于普通的卷神经网络,深度分离具有更好的效率和性能。 深度分离的应用可以广泛用于移动端设备、无线网络等资源有限的环境中。它在现代机器学习使用中得到了广泛的应用,包括在计算机视觉领域(如图像识别、物体检测)和语音处理领域(如语音识别)等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_-CHEN-_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值