(八)深度可分离卷积(Depthwise Separable Convolution,DSC)


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


深度可分离卷积(Depthwise Separable Convolution,DSC)最早出现在巴黎綜合理工學院(cmap ecole polytechnique)的Laurent Sifre于2014年提交的一篇名为“Rigid-motion scattering for image classification”的博士学位论文中。但让大家对DSC熟知的则是两个著名的模型,一个是2016年10月google对Inception v3改进后提出的Xception,另一个是2017年4月谷歌提出的专注于在移动设备上的轻量级神经网络MobileNet,关于MobileNet和Xception的介绍可参考知乎博文。要理解深度可分离卷积,先来回顾一下常规卷积神经网络。

1.常规卷积神经网络

大多数的资料将常规卷积神经网络都是以单通道图像为例子,不便于理解多通道的情况。这里借用CS231N讲义上的一个例子来说明:

https://cs231n.github.io//assets/conv-demo/index.html
<iframe src="https://cs231n.github.io//assets/conv-demo/index.html" width="100%" height="700px;" style="border:none;"></iframe>(本来是一个动图,CSDN这个老小子不给加载iframe标签)`

上图中,输入是5x5x3的图像,即宽W=5高H=5通道C=3,图中在输入图像上下左右边缘有+1padding,故图中宽高为7,卷积核大小3x3x2,卷积步长stride=2,根据下述公式可求卷积输出的大小:(5-3+2)/2+1=3
W o u t = W − K + 2 P S + 1 W_{out} = \frac{W-K+2P}{S} + 1 Wout=SWK+2P+1

其中W是输出图像的原始宽度,K是卷积核的大小,Ppadding的大小,stride是卷积的步长,
从上图可以得到卷积参数的计算方式为3x3x3x2=54
p a r a m e t e r s = K × K × C i n × C o u t parameters = K\times K \times C_{in} \times C_{out} parameters=K×K×Cin×Cout

图像卷积的计算可以参考下图:

在这里插入图片描述

卷积输出的通道为2卷积输入的通道为3,因此当前卷积层可理解为2个卷积核,每个卷积核的大小为3x3x3

  • 输入通道1应用卷积核W0的通道1计算

    o 0001 = 0 × 1 + 0 × 0 + 0 × ( − 1 ) + 0 × 1 + 2 × 0 + 2 × ( − 1 ) + 0 × 1 + 2 × ( − 1 ) + 1 × 1 = − 3 o0001=0\times 1+0\times 0+0\times (-1)+0\times 1+2\times 0+2\times (-1)+0\times 1+2\times (-1)+1\times 1 = -3 o0001=0×1+0×0+0×(1)+0×1+2×0+2×(1)+0×1+2×(1)+1×1=3
  • 输入通道1应用卷积核W0的通道2计算

    o 0002 = 0 × 1 + 0 × ( − 1 ) + 0 × 1 + 0 × 1 + 1 × 0 + 1 × ( − 1 ) + 0 × ( − 1 ) + 0 × ( − 1 ) + 1 × 0 = − 1 o0002=0\times 1+0\times (-1)+0\times 1+0\times 1+1\times 0+1\times (-1)+0\times (-1)+0\times (-1)+1\times 0 = -1 o0002=0×1+0×(1)+0×1+0×1+1×0+1×(1)+0×(1)+0×(1)+1×0=1
  • 输入通道1应用卷积核W0的通道3计算

    o 0003 = 0 × 0 + 0 × ( − 1 ) + 0 × ( − 1 ) + 0 × 0 + 0 × ( − 1 ) + 2 × ( − 1 ) + 0 × 1 + 1 × 0 + 2 × ( − 1 ) = − 4 o0003=0\times 0+0\times (-1)+0\times (-1)+0\times 0+0\times (-1)+2\times (-1)+0\times 1+1\times 0+2\times (-1)=-4 o0003=0×0+0×(1)+0×(1)+0×0+0×(1)+2×(1)+0×1+1×0+2×(1)=4
  • 输出o[0,0,0]处的值为:

    o [ 0 , 0 , 0 ] = o 0001 + o 0002 + o 0003 + b = − 3 + ( − 1 ) + ( − 4 ) + 1 = − 7 o[0,0,0]=o0001+o0002+o0003+b=-3+(-1)+(-4)+1=-7 o[0,0,0]=o0001+o0002+o0003+b=3+(1)+(4)+1=7

以上就是常规卷积的计算过程,不同通道间计算得到的结果求和再加偏置。

2.深度可分离卷积(Depthwise Separable Convolution,DSC)

了解了常规卷积的计算过程后,理解深度可分离卷积就很容易了。因为深度可分离卷积也是以常规的卷积神经网络为基础的,其计算成两部分,一部分是应用输入单个通道上的Depthwise卷积,一部分是核大小为1x1的Pointwise的常规卷积

2.1 Depthwise的逐通道卷积

Depthwise的逐通道卷积一个卷积核负责一个通道,一个通道只被一个卷积核卷积

图片参考自https://zhuanlan.zhihu.com/p/92134485
在这里插入图片描述

以输入宽高为5x5通道为3的图像为例,卷积核的输出通道也必须为3,3个卷积核分别只在输入数据的一个通道上做卷积,得到最后的卷积输出,注意与常规卷积的区分,3个卷积核大小都是3x3x1

因此Depthwise的逐通道卷积参数个数为:

p a r a m e t e r s D e p t h w i s e = 3 × 3 × 3 = 27 parameters_{Depthwise} = 3\times3\times3=27 parametersDepthwise=3×3×3=27

2.2 Pointwise的逐点卷积

Pointwise卷积运算是核大小为1x1的常规卷积运算。Pointwise卷积运算会将上一步Depthwise`的逐通道卷积的map在深度方向上进行加权组合。

在这里插入图片描述

Pointwise卷积的参数为:

p a r a m e t e r s P o i n t w i s e = 1 × 1 × 3 × 4 = 12 parameters_{Pointwise} = 1\times1\times3\times4=12 parametersPointwise=1×1×3×4=12

2.3 总结

  • ( K W , K H , C i n , C o u t ) = ( 3 , 3 , 3 , 4 ) (K_W,K_H,C_{in},C_{out})=(3,3,3,4) (KWKHCin,Cout)=(3,3,3,4)常规卷积的参数为108
  • ( K W , K H , C i n , C o u t ) = ( 3 , 3 , 3 , 4 ) (K_W,K_H,C_{in},C_{out})=(3,3,3,4) (KWKHCin,Cout)=(3,3,3,4)深度可分离卷积的参数为27+12=39
  • 参数上深度可分离卷积减少了网络的参数,因此网络可以做的更深
  • Depthwise卷积相当于只在空间上卷积
  • Pointwise卷积相当于进行通道间的特征融合

参考资料

  • 6
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 深度可分离卷积(Depthwise Separable Convolution)是一种卷积方式,它将卷积操作分为两步来进行:深度卷积和点卷积。其中,深度卷积对于每个输入通道分别做卷积,而点卷积则将各个输入通道的卷积结果按照权值线性组合。这样可以减少参数量,加速计算,并且能够在保持精度的前提下压缩模型。 ### 回答2: Depthwise separable convolution深度可分离卷积)是一种轻量级的卷积操作,它可以有效降低模型的参数量和计算量,从而实现更加高效的模型训练和推理。 相比于传统的卷积操作,depthwise separable convolution 由两个步骤构成:depthwise convolution(深度卷积)和pointwise convolution(逐点卷积)。具体来说,先对输入的每个通道单独进行卷积操作(即深度卷积),然后再通过逐点卷积来将各个通道的特征进行整合,最终得到输出结果。 对于一个用于目标识别的卷积网络来说,depthwise separable convolution 的主要优势在于它能够显著减少网络中的参数量和计算量。由于在进行深度卷积时,每个通道都是单独进行处理,所以会大幅降低计算量和计算时间。而逐点卷积则可以有效压缩卷积层的通道数,从而降低参数量和内存占用。 举个例子,假设对于一个输入大小为H×W×C的图像,原本需要使用大小为K×K×C×S的卷积核来进行卷积操作,其中S表示输出通道数目。那么使用 depthwise separable convolution 进行操作时,先使用大小为K×K×C的卷积核进行深度卷积(相当于使用了C个大小为K×K的卷积核),然后通过大小为1×1×CS的卷积核进行逐点卷积。这样,在输出相同结果的情况下,参数量和计算量就能大幅降低,从而加速模型的训练和推理。 总之,depthwise separable convolution 是一种轻量级的卷积操作,可以有效压缩模型的参数量和计算量,提高模型的计算效率。在目标识别等领域,可以作为一种强大的工具,用于设计更加高效的卷积神经网络。 ### 回答3: Depthwise separable convolution深度可分离卷积)是一种卷积神经网络(CNN)中用于减少网络参数个数和计算量的结构。它是由谷歌的研究者提出的一种卷积结构,并在MobileNet中得到广泛应用。 普通的卷积神经网络是由卷积层、池化层和全连接层组成。其中,卷积层是网络中最消耗时间和空间的部分,需要大量的计算资源。深度可分离卷积是一种卷积结构,通过分离卷积的过程,将卷积操作分为两个部分:深度卷积和逐点卷积。 首先,深度卷积只在每个输入通道上进行卷积操作,而不是在所有输入通道上同时进行。这样可以减少卷积核的数量。其次,逐点卷积使用1x1的卷积核,对每个通道分别进行卷积操作。这可以将通道之间的相互影响降到最低。 因为这种分离,深度可分离卷积可以明显降低计算量和模型参数,能够在保证模型精度的情况下,让模型具有更小的体积和更高的运行速度。相比于普通的卷积神经网络深度可分离卷积具有更好的效率和性能。 深度可分离卷积的应用可以广泛用于移动端设备、无线网络等资源有限的环境中。它在现代机器学习使用中得到了广泛的应用,包括在计算机视觉领域(如图像识别、物体检测)和语音处理领域(如语音识别)等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值