(Lightweight multi-scale aggregated residual attention networks for image super-resolution)阅读笔记

本文介绍了轻量级多尺度聚合残差注意力网络(LMARAN)在图像超分辨率任务中的应用。该网络通过浅层特征提取、多尺度聚合残差注意力组(MARAGs)和多维特征融合模块,实现高效特征提取和融合。MARAGs由参数共享的MARAB模块构成,结合了多尺度残差注意力机制。网络结构包括MSAB、RCAB和空间注意力单元,利用残差学习和注意力机制增强特征表示。实验部分展示了模型的有效性和参数设置。
摘要由CSDN通过智能技术生成

轻量级多尺度残差注意力网络

Lightweight multi-scale aggregated residual attention networks for image super-resolution

 摘要:本文提出了轻量级多尺度聚合残差注意力网络,这可以提取多尺度特征和分层特征。主要包含三个部分:浅层特征提取,多尺度聚合残差注意力组(MARAGs),多维特征融合模块(MLFFB),重建模块。MARAGs产生分层特征和多尺度特征,结合了多尺度残差注意力机制的MLFFB聚合多维特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值