Lightweight Image Super-Resolution with Adaptive Weighted Learning Network

这篇文章起源于Residual Convolutional Neural Network Revisited with Active Weighted
Mapping,由于现行残差网络中为用初始低分辨率图片插值到最终大小,即将初始图片映射到最终将解空间,虽说可以很好的降低运算量,但是在所有路径上使用同一权重是否正确,即现行残差网络在减少参数的情况下,同时也限制了超分的质量,因此Residual Convolutional Neural Network Revisited with Active Weighted
Mapping提出了一种自适应的残差层以及主映射的一种学习机制,并验证了在残差网络中添加参数是有效地。
在这里插入图片描述
上图是对cifar——10进行分类测试的错误率明显看到随着层数增加对残差网络添加参数比直接对残差和初始图像的映射简单加和错误率有了明显下降

即将生成的残差结果和图像映射分别做全局平均池化,后将两个池化得到的值进行拼接,首先经过全连接层生成e11学习非线性映射并进行降维,后经过激活函数和全连接层进一步学习非线性映射,并生成两个数,一个自适应学习残差支路的权值,另一个自适应学习映射支路的参数
在这里插入图片描述
在这里插入图片描述
不过该论文提出的方法由于添加了全连接层,因此添加了大量的参数,本论文在对残差网络添加参数的同时提出了一种轻量级的网络,即将生成参数的全连接层去除,本文代码中运用了nn.Parameter函数设置了一个可以进行学习的参数函数
在这里插入图片描述nn.parameter函数可以将设置的init_value设置为网络中的可学习的参数。
本文就是利用这个函数代替了学习参数用的全局平均池化和全连接层,从而减小了大量的参数,利用生成的残差支路与映射支路分别计算其与参数的乘积
在这里插入图片描述
在这里插入图片描述
其中返回值可以分解为self.body(x)self.res_scale(1)+xself.x_scale,其中x为特征图直接映射,self.body(x)为经过网络后形成的残差映射,通过此结构构成基础模型awru。
而由4个AWRU以及一个含参的残差网络构成LFB,并且每个AWRU输出的残差都会输入到最后拼接在一起后进行降维,并自适应计算总体残差和初始映射的参数
在这里插入图片描述
最后还有一个AWMS的上采样特征融合块,这个块首先将最后一个LFB的输出输入到一个多个尺度的特征提取的卷积层中,通过多个不同感受野的卷积核提取不同感受野下残差的特征信息,并给每一个感受野都自适应的学习一个参数,并进行亚像素曾上采样后,进行特征融合(将各个感受野下提取到的残差图逐元素相加),加上初始lr图像的插值上采样图像,生成超分图片。
在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值