pytorch常用的优化器

torch.optim 是 PyTorch 中用于优化模型参数的一个重要模块,它提供了多种优化算法的实现。下面是一些常用的优化器,包括它们的定义、原理、优缺点:

1. SGD (Stochastic Gradient Descent)

定义:SGD 是一种基本的优化算法,用于随机地优化目标函数。它通过计算梯度并更新参数来最小化损失函数。

原理:在每个训练步骤中,SGD 使用来自随机选择的小批量样本的梯度来更新模型参数。

class torch.optim.SGD(params, lr=<object object>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

优点

  • 实现简单,计算效率高(特别是对于大规模数据集)。
  • 对于某些类型的损失函数(如凸损失函数),SGD 能够保证收敛到全局最小值。

缺点

  • 学习率的选择很关键,太小会导致收敛缓慢,太大则可能导致收敛到次优解或发散。
  • 可能会陷入局部最小值或鞍点。
  • 不考虑历史梯度信息,可能导致在最优解附近震荡。

2. Adam (Adaptive Moment Estimation)

定义:Adam 是一种基于梯度下降的优化算法,它结合了动量(Momentum)和RMSprop算法的思想。

原理:Adam 计算梯度的一阶矩估计(即均值)和二阶矩估计(即未中心化的方差),然后利用这些估计来调整每个参数的学习率。

class torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)

优点

  • 自适应地调整学习率,对于不同的参数有不同的学习率。
  • 对超参数的选择相对不敏感(如学习率)。
  • 收敛速度快,效果好。

缺点

  • 可能因为更新步长过大而错过最优解。
  • 后期可能由于学习率过小而导致学习停滞。

3. RMSprop

定义:RMSprop 是一种自适应学习率方法,它通过调整每个参数的学习率来加速训练。

原理:RMSprop 对梯度进行平方的指数加权移动平均,并据此调整学习率。它试图解决 Adagrad 在学习率衰减过快的问题。

class torch.optim.RMSprop(params, lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False)

优点

  • 自适应地调整学习率,对于不同的参数有不同的学习率。
  • 在非凸优化问题中表现良好。

缺点

  • 与 Adam 类似,RMSprop 也可能由于学习率过小而导致学习停滞。

4. Momentum

定义:Momentum 是一种加速 SGD 的方法,它模拟了物理中的动量概念。

原理:Momentum 在更新参数时,不仅考虑当前的梯度,还考虑过去的梯度(即动量)。这有助于在相关方向上加速 SGD,并抑制震荡。

优点

  • 加速收敛,特别是在处理高曲率、小但一致的梯度时。
  • 减少震荡,使收敛更加稳定。

缺点

  • 仍然需要选择一个合适的学习率。
  • 动量参数(如 β)的选择对性能有影响。

5. Adagrad

定义:Adagrad 是一种自适应学习率算法,它为每个参数维护一个累积的梯度平方和。

原理:Adagrad 根据每个参数的累积梯度平方和来调整学习率,使得频繁更新的参数的学习率逐渐减小,而稀疏更新的参数的学习率相对较大。

class torch.optim.Adagrad(params, lr=0.01, lr_decay=0, weight_decay=0, initial_accumulator_value=0)

优点

  • 适用于处理稀疏梯度。
  • 不需要手动调整学习率。

缺点

  • 学习率会单调递减,导致后期学习率过小,可能使训练提前停止。
  • 对初始学习率的选择较为敏感。

6. Adadelta

定义
Adadelta是一种自适应学习率算法,它通过计算每个参数梯度的平方的指数移动平均来调整学习率。

原理
Adadelta避免了Adagrad学习率单调递减的问题,它通过维护一个窗口内的梯度平方和,并根据这个累积值来动态调整每个参数的学习率。

优缺点

  • 优点:与Adagrad相比,Adadelta的学习率不会单调递减,因此可以避免训练后期学习率过小的问题。同时,它不需要手动设置全局学习率。
  • 缺点:在某些情况下,Adadelta的性能可能不如Adam等更先进的优化器。

7. Adagrad

定义
Adagrad是一种为每一个参数保留一个学习率的优化算法,独立地适应模型参数,对频繁更新的参数执行较小的更新,对不频繁更新的参数执行较大的更新。

原理
Adagrad为每个参数维护一个累积的梯度平方和,并根据这个累积值来调整学习率。随着训练的进行,频繁更新的参数的学习率会逐渐减小,而稀疏更新的参数的学习率相对较大。

优缺点

  • 优点:适用于处理稀疏梯度的问题,并且不需要手动设置全局学习率。
  • 缺点:学习率会单调递减,这可能导致训练后期学习率过小,从而提前停止学习。此外,Adagrad对初始学习率的选择较为敏感。

8. Adamax

定义
Adamax是Adam算法的一个变体,它使用无穷范数(infinity norm)来计算梯度的一阶矩估计,而不是默认的L2范数。

原理
Adamax通过维护梯度的一阶矩和二阶矩的估计,并根据这些估计来调整学习率。与Adam不同的是,Adamax在计算梯度的一阶矩估计时使用了无穷范数。

优缺点

  • 优点:在某些情况下,Adamax可能比Adam具有更好的性能,特别是在处理具有大梯度的数据集时。
  • 缺点:与Adam类似,Adamax也可能对超参数的选择敏感,特别是学习率。

9. SparseAdam

定义
SparseAdam是Adam算法的一个变体,专门用于处理稀疏梯度的情况。

原理
SparseAdam优化了内存使用和计算效率,特别是当梯度非常稀疏时。它只对非零梯度元素进行更新,从而减少了计算量和内存消耗。

优缺点

  • 优点:适用于处理具有大量稀疏参数的模型,如自然语言处理中的嵌入层。它可以显著提高训练效率和减少内存消耗。
  • 缺点:在梯度不稀疏的情况下,SparseAdam的性能可能不如普通的Adam算法。

10. LBFGS

定义
LBFGS(Limited-memory Broyden–Fletcher–Goldfarb–Shanno)是一种基于拟牛顿法的优化算法,它使用有限的内存来近似Hessian矩阵的逆。

原理
LBFGS通过维护一个历史梯度信息的集合来近似Hessian矩阵的逆,并据此进行参数更新。它特别适用于处理具有少量参数和强凸性问题的优化任务。

优缺点

  • 优点:在处理小规模优化问题时具有较高的效率和精度。
  • 缺点:由于需要存储历史梯度信息,因此内存消耗较大。此外,LBFGS不适用于具有大量参数的深度学习模型。

总结

每种优化器都有其独特的优缺点,选择哪种优化器取决于具体的应用场景、模型结构、数据集特性等因素。在实践中,通常需要通过实验来比较不同优化器的效果,并选择最适合当前任务的优化器。

  • 11
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值