基于深度卷积神经网络的超声图像乳腺病变分类(IEEE Access)

本文探讨了基于深度卷积神经网络(CNN)的超声图像乳腺病变分类方法,针对有限数据集进行优化,通过自定义CNN、迁移学习和正则化技术提高性能。实验结果显示,定制的CNN架构在乳腺肿瘤分类中达到92.05%的准确率和0.97的AUC,优于传统机器学习算法。
摘要由CSDN通过智能技术生成

Breast Lesion Classification in Ultrasound Images Using Deep Convolutional Neural Network

摘要:

近年来,卷积神经网络在医学图像分析中得到了广泛的应用。CNN有足够的标记数据,可以训练它学习图像特征,用于目标定位、分类和分割。尽管建立和改进医学图像分析的自动化系统有很多好处,但缺乏可靠和公开的生物医学数据集使这项任务变得困难。在本研究中,我们将研究CNN在超声(US)图像中对乳腺病变分类的有效性。首先,由于训练数据的数量有限,我们使用了一个定制的具有几个层和应用正则化技术的CNN来提高性能。其次,我们使用迁移学习,并为我们的数据集适用一些预先训练的模型。在这项工作中使用的数据集由数量有限的病例组成,总共641例,组织病理学分类(413例良性病变和228例恶性病变)。为了评估我们的分类器的结果如何在我们的数据集上泛化,我们使用了5折交叉验证,其中每折80%的数据用于训练,20%用于测试。准确性和ROC曲线下面积(area under the ROC curve, AUC)被用作主要性能指标。在应用任何正则化技术之前,我们获得了85.98%的肿瘤分类的总体准确性,AUC等于0.94。采用图像增强和正则化后,图像的正确率和AUC分别提高到92.05%和0.97。使用预先训练的模型,我们获得了87.07

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值