练习0:前向传播

深度学习–前向传播

练习0
时间:2020.9.24

  • 数据:处理,iter
  • w1,w2,w3,b1,b2,b3…
  • epoch, step,
  • tf.GradientTape():w1,w2,w3,b1,b2,b3,loss
  • 更新

import tensorflow as tf
from tensorflow import keras
from keras import datasets
import os

(x, y), _ = datasets.mnist.load_data()
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32)
print(x.shape, y.shape, x.dtype, y.dtype)
print(tf.reduce_min(x), tf.reduce_max(x))
print(tf.reduce_min(y), tf.reduce_max(y))

train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
train_iter = iter(train_db)
sample = next(train_iter)
print("batch:", sample[0].shape, sample[1].shape)

w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))

lr = 1e-3

for epoch in range(10):

    for step, (x, y) in enumerate(train_db):

        x = tf.reshape(x, [-1, 28*28])

        with tf.GradientTape() as tape:
            h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256])
            h1 = tf.nn.relu(h1)
            h2 = h1 @ w2 + b2
            h2 = tf.nn.relu(h2)
            out = h2 @ w3 + b3

            y_onehot = tf.one_hot(y, depth=10)

            loss = tf.square(y_onehot - out)
            loss = tf.reduce_mean(loss)

        grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
        # w1 = w1 - lr * grads[0]
        w1.assign_sub(lr * grads[0])
        b1.assign_sub(lr * grads[1])
        w2.assign_sub(lr * grads[2])
        b2.assign_sub(lr * grads[3])
        w3.assign_sub(lr * grads[4])
        b3.assign_sub(lr * grads[5])

        if step % 100 == 0 :
            print(epoch, step, "loss:", float(loss))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值