目标检测(YOLO,SSD,Efficientdet,RCNN系列)

该博客详细介绍了目标检测中的几个关键模型,包括YOLO系列(YOLOv3和YOLOv4)、SSD、Efficientdet和RCNN系列(Faster R-CNN)。重点讲解了各模型的网络结构、预测和训练流程,如YOLOv4中的CSPDarkNet53、SPP和PANet,SSD的特征金字塔网络,以及Efficientdet的BiFPN和复合缩放方法。此外,还提到了Faster R-CNN的RPN网络和RoI Pooling操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

目标检测现在已经发展有几年了,自己接触目标检测网络也有很长一段时间了,现在就在这里总结一下我所使用过的目标检测的网络模型,以及他们的优缺点。

一、YOLO 系列

YOLO系列到现在为止已经更新到YOLO V4(V5应该不算吧?)。由于YOLO系列都是一步步升级而来,所以本文直接从V3、V4开始介绍。

1.1 yolo v3

yolo v3 网络

Yolov3是2018年发明提出的,这成为了目标检测one-stage中非常经典的算法,包含Darknet-53网络结构、anchor锚框、FPN等非常优秀的结构。

Yolo的整个网络,吸取了Resnet、Densenet、FPN的精髓,可以说是融合了目标检测当前业界最有效的全部技巧(YOLO V4没出来以前)

  1. Yolov3中,只有卷积层,通过调节卷积步长控制输出特征图的尺寸。所以对于输入图片尺寸没有特别限制。流程图中,输入图片以416x416作为样例。

  2. Yolov3借鉴了金字塔特征图思想,小尺寸特征图用于检测大尺寸物体,而大尺寸特征图检测小尺寸物体。特征图的输出维度为N x N x[3x (4+ 1+80)],N x N为输出特征图格点数,一共3个Anchor框,每个框有4维预测框数值tr,ty,tw,th , 1维预测框置信度, 80维物体类别数(COCO数据集)。所以第一层特 征图的输出维度为13 x 13 x 255。

  3. Yolov3总共输出3个特征图,第一个特征图下采样32倍 ,第二个特征图下采样16倍 ,第3个下采样8倍。输入图像经过Darknet53 (无全连接层),再经过Yoloblock生成的特 征图被当作两用,第一用为经过3 x 3卷积层、1 x 1卷积之后生成特征图一 ,第二用为经过1 x 1卷积层加上采样层,与DarkNet53网络的中间层输出结果进行拼接,产生特征图二。同样的循环之后产生特征图三。

  4. concat操作与加和操作的区别:加和操作来源于ResNet思想,将输入的特征图,与输出特征图对应维度进行相加,即y= f(x) + x ; 而concat操作源于DenseNet网络的设计思路,将特征图按照通道维度直接进行拼接,例如8 x 8 x 16的特征图与8 x 8 x 16的特征图拼接后生成8 x 8 x 32的特征图。

  5. 上采样层(upsample):作用是将小尺寸特征图通过插值等方法,生成大尺寸图像。例如使用最近邻插值算法,将13 x 13的图像变换为26 x 26。上采样层不改变特征图的通道数。

其实际情况就是,由于我们使用得是Pytorch,它的通道数默认在第一位,输入N张416x416的图片,在经过多层的运算后,会输出三个shape分别为(N,255,13,13),(N,255,26,26),(N,255,52,52)的数据,对应每个图分为13x13、26x26、52x52的网格上3个先验框的位置。

yolo v3 预测流程
yolo v3 训练流程(暂时没梳理出来)

1.2 yolo v4

YOLOV4是YOLOV3的改进版,在YOLOV3的基础上结合了非常多的小Tricks。尽管没有目标检测上革命性的改变,但是YOLOV4依然很好的结合了速度与精度。YOLOV4在YOLOV3的基础上,在FPS不下降的情况下,mAP达到了44,提高非常明显。

#### yolo v4 网络 **主干提取网络**
YOLOV4改进的部分(不完全)
  1. 主干特征提取网络:DarkNet53 => CSPDarkNet53

    CSPnet结构并不算复杂,就是将原来的残差块的堆叠进行了一个拆分,拆成左右两部分:主干部分继续进行原来的残差块的堆叠;另一部分则像一个残差边一样,经过少量处理直接连接到最后。因此可以认为CSP中存在一个大的残差边。

  2. 特征金字塔:SPP,PAN:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值