文巾解题 11. 盛最多水的容器

1 题目描述

2 解题思路

双指针

算法流程: 设置双指针 i,j 分别位于容器壁两端,根据规则移动指针(规则后文会提及),并且更新面积最大值 res,直到 i > j 时返回 res。

 

指针移动规则与证明: 每次选定围成水槽两板高度 h[i],h[j]中的短板,向中间收窄 1 格。

 

以下证明:

设每一状态下水槽面积为 S(i, j)(0<=i<j<n),由于水槽的实际高度由两板中的短板决定,则可得面积公式 S(i, j) = min(h[i], h[j]) × (j - i)。

在每一个状态下,无论长板或短板收窄 1 格,都会导致水槽 底边宽度 -1:

若向内移动短板,水槽的短板 min(h[i], h[j])可能变大,因此水槽面积 S(i, j) 可能增大。

若向内移动长板,水槽的短板 min(h[i], h[j])不变或变小,下个水槽的面积一定小于当前水槽面积(j-i)变小了。

因此,向内收窄短板可以获取面积最大值。

 

从剪枝的角度理解算法:

若不指定移动规则,所有移动出现的 S(i, j) 的状态数为 C(n, 2),即暴力枚举出所有状态。

在状态 S(i, j)下向内移动短板至 S(i + 1, j)(假设 h[i] < h[j] ),则相当于消去了 {S(i, j - 1), S(i, j - 2), ... , S(i, i + 1)} 状态集合。而所有消去状态的面积一定 <= S(i, j):

短板高度:相比 S(i, j) 相同或更短(<= h[i]);

底边宽度:相比 S(i, j) 更短。

因此所有消去的状态的面积都 < S(i, j)。

换句话说,我们每次向内移动短板,所有的消去状态都不会导致丢失面积最大值 。

 

复杂度分析:

时间复杂度 O(N),双指针遍历一次底边宽度 N 。

空间复杂度 O(1),指针使用常数额外空间。

class Solution:
    def maxArea(self, height: List[int]) -> int:
        first=0
        last=len(height)-1
#起始和终止位置的指针
        max_l=0
#当前最大蓄水量

        while(first<last):
            tmp=min(height[first],height[last])*(last-first)
            max_l=max(tmp,max_l)
            
            if(height[first]<=height[last]):
                first+=1
            else:
                last-=1
        return(max_l)
        

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值