概率统计笔记:贝叶斯推断 Bayesian Inference

本文深入探讨了贝叶斯定理和全概率公式,解释了如何使用这些概念进行条件概率计算。贝叶斯推断通过结合先验概率和可能性函数来更新后验概率,从而更准确地估计事件的可能性。当可能性函数大于1时,先验概率增加;等于1时,保持不变;小于1则减少。这一方法在数据分析和统计推理中具有广泛应用。
摘要由CSDN通过智能技术生成

1 贝叶斯定理和全概率公式(复习)

贝叶斯定理(条件概率的计算公式):P(A|B)=\frac{P(B|A)P(A)}{P(B)}

全概率公式:如果A和A'构成了样本空间的一个划分,那么事件B的概率为:

P(B)=P(B|A)P(A)+P(B|A')P(A')

全概率公式下条件概率的另一种写法:P(A|B)=\frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A')P(A')}

2 贝叶斯推断

        对条件概率公式进行变形,可以得到如下形式:

                ​​​​​​​        P(A|B)=P(A)\frac{P(B|A)}{P(B)}

        P(A)——先验概率(prior probability)【事件B发生之前,事件A概率的一个判断】

        P(A|B)——后验概率(posterior probability)【事件B发生后,对事件A概率的一个重新判断】

        \frac{P(B|A)}{P(B)}——可能性函数(likelihood)【似然,调整因子,使得估计概率更接近真实概率】

        所以条件概率可以表示为:

        后验概率=先验概率 × 调整因子

         这就是贝叶斯推断的含义。我们先预估一个"先验概率",然后加入实验结果,看这个实验到底是增强还是削弱了"先验概率",由此得到更接近事实的"后验概率"。

  • 如果"可能性函数"\frac{P(B|A)}{P(B)}大于1,意味着"先验概率"被增强,事件A的发生的可能性变大
  •  如果"可能性函数"\frac{P(B|A)}{P(B)}等于1,意味着B事件无助于判断事件A的可能性

  •  如果"可能性函数"\frac{P(B|A)}{P(B)}小于1,意味着"先验概率"被削弱,事件A的可能性变小

        

 参考资料:浅谈贝叶斯推断 - 加拿大小哥哥 - 博客园 (cnblogs.com)

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值