论文笔记 Exploring Large Language Models forHuman Mobility Prediction under Public Events

本文探讨了利用互联网和社交媒体上的活动描述数据改进旅行需求预测的方法,特别关注LLMs在处理文本信息和活动类别理解上的潜力。文章提出了一种新的预测框架LLM-MPE,通过特征开发和移动性预测两个阶段,旨在提高模型的预测能力和可解释性,同时指出处理大量数据和空间关系理解的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

202311

1 intro

1.1 背景

  • 公共活动(音乐会、体育赛事等)常常在特定时间吸引大量访客到特定地点,导致旅行需求不规律激增
    • 为了维护活动场地的安全并确保交通系统的顺畅运行,准确预测这些活动的旅行需求模式至关重要
  • 之前已经提出了许多旅行需求预测方法
    • 但它们通常忽略了由公共活动引起的不规则移动模式
  • 互联网和社交媒体平台的广泛采用为收集活动细节提供了新途径
    • 活动组织者在售票网站和社交媒体上宣传他们的活动,突出显示重要细节如日期、时间、地点和文本描述
    • 先前的研究已证明这类在线信息在提高特殊事件下的移动性预测准确性方面的潜力
      • 大多数研究仅整合了数值或分类数据,包括活动类别、时间和相关社交媒体帖子的数量。通常忽视的是,事件描述中丰富的文本信息,它可以提供有关活动主题、参与者和背景细节的宝贵见解

1.2 三个挑战

  • 有效利用在线活动描述中丰富的文本数据,这些数据在结构和深度上常常不同
    • 一些活动附带的文本描述很少,需要模型进行更深层的语义理解
      • 例如,对于一个如“WALK THE MOON”这样的事件描述,传统语言模型可能无法立即解释为是美国摇滚乐队Walk the Moon的音乐会
    • 对于详细描述的事件,模型需要筛选描述以提取相关信息
      • 例如,如果一个事件描述深入讲述了表演者的生平故事,那么对于语言模型来说,区分无关细节和移动性预测相关信息将会很有挑战性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值