矩阵分析与应用(12)

学习来源:《矩阵分析与应用》张贤达 清华大学出版社

Hadamard 积

1. 矩阵的直和

        定义 1 :m\times m 矩阵 A 与 n\times n 矩阵 B 的直和记作 A\oplus B ,它是一个 (m+n)\times (m+n) 的矩阵,定义为:

A\oplus B=\begin{bmatrix} A & O_{m\times n}\\ O_{n\times m} & B \end{bmatrix}

需要注意的是,两个矩阵的直和不是两个矩阵元素之间的运算,只是一种形式上的求和符号。矩阵的直和的真实含义是将两个矩阵按照对角线位置堆放,直接组合成一个更大维的矩阵。类似地,可以定义多个矩阵的直和。

        矩阵直和的性质:

1)若 c 为常数,则 c(A\oplus B)=cA\oplus cB 。

2)若 A\neq B ,则 A\oplus B\neq B\oplus A 。

3)矩阵直和的复共轭、转置、复共轭转置逆矩阵为: 

(A\oplus B)^*=A^*\oplus B^*

(A\oplus B)^T=A^T\oplus B^T

(A\oplus B)^H=A^H\oplus B^H

                       (A\oplus B)^{-1}=A^{-1}\oplus B^{-1} , A,B 可逆

4)若 A,B 为 m\times m 矩阵,且 C,D 为 n\times n 矩阵,则

(A\pm B)\oplus (C\pm D)=(A\oplus C)\pm (B\oplus D)

(A\oplus C)(B\oplus D)=AB\oplus CD

5)若 A,B,C 分别是 m\times m,n\times n,p\times p 矩阵,则

A\oplus (B\oplus C)=(A\oplus B)\oplus C=A\oplus B\oplus C

6)矩阵直和的迹、秩、行列式为:

tr(\bigoplus_{i=0}^{N-1 }A_i)=\sum_{i=0}^{N-1}tr(A_i)

rank(\bigoplus_{i=0}^{N-1 }A_i)=\sum_{i=0}^{N-1}rank(A_i)

det(\bigoplus_{i=0}^{N-1 }A_i)=\prod_{i=0}^{N-1}det(A_i)

7)若 A,B 分别是 m\times m,n\times n 正交矩阵,则 A\oplus B 是 (m+n)\times (m+n) 的正交矩阵。

2. Hadamard 积

        考虑两个矩阵的直接乘积。

        定义: m\times n 矩阵 A=[a_{ij}] 与 m\times n 矩阵 B=[b_{ij}] 的 Hadamard 积记作 A\odot B ,它仍是一个 m\times n 矩阵,定义为:

A\odot B=[a_{ij}b_{ij}]

Hadamard 积也称  Schur 积或对应元素乘积。

        定理 1 :若 m\times m 矩阵 A,B 是正定(或半正定)的,则它们的 Hadamard 积 A\odot B 也是正定(或半正定)的。

        定理 2 :令 A 是一个 m\times m 矩阵,则 A 是半正定矩阵,当且仅当

\sum_{i=1}^{m}\sum_{j=1}^{m}a_{ij}b_{ij}\geqslant 0

对所有 m\times m 半正定矩阵 B 成立。

        定理 3 :令 A,B,C 为 m\times n 矩阵,且 x=[1,1,\cdots ,1]^T 为 n\times 1 求和向量,D=diag(d_1,d_2,\cdots ,d_m)  ,其中,d_i=\sum_{j=1}^{n}a_{ij}  ,则

tr(A^T(B\odot C))=tr((A^T\odot B^T)C)

x^TA^T(B\odot C)x=tr(B^TDC)

        定理 4 :令 A,B 为 n\times n 正方矩阵,且 x=[1,1,\cdots ,1]^T 为 n\times 1 求和向量。假定 M 是一个 n\times n 对角矩阵 M=diag(\mu_1,\mu_2,\cdots ,\mu_n ) ,而 m=Mx 为 n\times 1 向量,则

tr(AMB^TM)=m^T(A\odot B)m

tr(AB^T)=x^T(A\odot B)x

MA\odot B^TM=M(A\odot B^T)M

        Hadamard 积的性质:

1)若 A,B 均为 m\times n 矩阵,则

A\odot B=B\odot A

(A\odot B)^T=A^T\odot B^T

(A\odot B)^H=A^H\odot B^H

(A\odot B)^*=A^*\odot B^*

2)任何一个 m\times n 矩阵 A 与 m\times n 零矩阵的 Hadamard 积等于 m\times n 零矩阵。

3)若 c 为常数,则

c(A\odot B)=(cA)\odot B=A\odot (cB)

4)矩阵 A_{m\times m}=[a_{ij}] 与单位矩阵 I_m 的 Hadamard 积为 m\times m 对角矩阵,即

A\odot I_m=I_m\odot A=diag(A)=diag(a_{11},a_{22},\cdots ,a_{mm})

5)若 A,B,C,D 均为 m\times n 矩阵,则

A\odot (B\odot C)=(A\odot B)\odot C=A\odot B\odot C

(A\pm B)\odot C=A\odot C\pm B\odot C

(A+B)\odot (C+D)=A\odot C+A\odot D+B\odot C +B\odot D

6)若 A,C 为 m\times m 矩阵,且 B,D 为 n\times n 矩阵,则

(A\odot B)\odot (C\odot D)=(A\odot C)\odot (B\odot D)

7)若 A,B,C 为 m\times n 矩阵,则

tr(A^T(B\odot C))=tr((A^T\odot B^T)C)

8)若 A,B,D 为 m\times m 矩阵,则

                                    D 为对角矩阵    \Rightarrow     (DA)\odot (BD)=D(A\odot B)D

9)若 m\times m 矩阵 A,B 是 正定(半正定)的,则它们的 Hadamard 积 A\odot B 也是正定(或半正定)的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值