学习来源:《矩阵分析与应用》张贤达 清华大学出版社
Hadamard 积
1. 矩阵的直和
定义 1 : 矩阵 与 矩阵 的直和记作 ,它是一个 的矩阵,定义为:
需要注意的是,两个矩阵的直和不是两个矩阵元素之间的运算,只是一种形式上的求和符号。矩阵的直和的真实含义是将两个矩阵按照对角线位置堆放,直接组合成一个更大维的矩阵。类似地,可以定义多个矩阵的直和。
矩阵直和的性质:
1)若 为常数,则 。
2)若 ,则 。
3)矩阵直和的复共轭、转置、复共轭转置逆矩阵为:
, 可逆
4)若 为 矩阵,且 为 矩阵,则
5)若 分别是 矩阵,则
6)矩阵直和的迹、秩、行列式为:
7)若 分别是 正交矩阵,则 是 的正交矩阵。
2. Hadamard 积
考虑两个矩阵的直接乘积。
定义: 矩阵 与 矩阵 的 Hadamard 积记作 ,它仍是一个 矩阵,定义为:
Hadamard 积也称 Schur 积或对应元素乘积。
定理 1 :若 矩阵 是正定(或半正定)的,则它们的 Hadamard 积 也是正定(或半正定)的。
定理 2 :令 是一个 矩阵,则 是半正定矩阵,当且仅当
对所有 半正定矩阵 成立。
定理 3 :令 为 矩阵,且 为 求和向量, ,其中, ,则
和
定理 4 :令 为 正方矩阵,且 为 求和向量。假定 是一个 对角矩阵 ,而 为 向量,则
Hadamard 积的性质:
1)若 均为 矩阵,则
2)任何一个 矩阵 与 零矩阵的 Hadamard 积等于 零矩阵。
3)若 为常数,则
4)矩阵 与单位矩阵 的 Hadamard 积为 对角矩阵,即
5)若 均为 矩阵,则
6)若 为 矩阵,且 为 矩阵,则
7)若 为 矩阵,则
8)若 为 矩阵,则
为对角矩阵
9)若 矩阵 是 正定(半正定)的,则它们的 Hadamard 积 也是正定(或半正定)的。