矩阵分析与应用(17)

学习来源:《矩阵分析与应用》 张贤达 清华大学出版社

QR 分解及其应用

1. Givens 旋转

        Givens 旋转就是初等旋转变换。在 n 维向量空间中,通过固定 n-2 维不变,在剩下的两维构成的平面上做旋转变换。基本结构如下:

R_{ij}^n=\begin{bmatrix} 1 & & & & & & & & & & \\ & \ddots & & & & & & & & & \\ & & 1 & & & & & & & & \\ & & & cos\theta &0 & \cdots& 0& sin\theta & & & \\ & & &0 &1 & \cdots &0 &0 & & & \\ & & & \vdots&\vdots & &\vdots &\vdots & & & \\ & & & 0&0 &\cdots &1 &0 & & & \\ & & &-sin\theta &0 &\cdots &0 &cos\theta & & & \\ & & & & & & & &1 & & \\ & & & & & & & & &\ddots & \\ & & & & & & & & & &1 \end{bmatrix}                                                    (1)

矩阵 R_{ij}^n 满足:

\left\{\begin{matrix} r_{ii}=cos\theta \\ r_{ij}=sin\theta \\ r_{ji}=-sin\theta \\ r_{jj}=cos\theta (i<j)\\ r_{pp}=1(p\neq i,j)\\ r_{pq}=0\quad ,other \end{matrix}\right.

        矩阵 R_{ij}^n 可以看成是 n 阶单位矩阵 I 修改而成:将 I 位于 (i,i),(ij),(ji),(jj) 上的元素分别替换为cos\theta ,sin\theta,-sin\theta,cos\theta ,其它元素保持不变。其中的 \theta 通常称为旋转角,矩阵 R_{ij}^n 通常叫做初等旋转矩阵,它所确定的线性变换叫做初等线性变换,也可以叫做吉文斯(Givens)变换。

        矩阵 R_{ij}^n 具有性质:

1) detR_{ij}^n=1 ;

2) R_{ij}^n 对应的初等旋转变换是正交变换,R_{ij}^n 是正交矩阵。

2. 采用 Givens 旋转的 QR 分解

        Givens 旋转也可以用来计算 QR 分解。以 4\times 3 矩阵为例,说明 Givens QR 分解的思想:

\begin{bmatrix} \otimes & \times &\times \\ \times & \times& \times\\ \times & \times & \times\\ \otimes & \times& \times \end{bmatrix}\overset{(1,4)}{\rightarrow}\begin{bmatrix} \otimes & \times &\times \\ \times & \times& \times\\ \otimes & \times & \times\\ 0 & \times& \times \end{bmatrix}\overset{(1,3)}{\rightarrow}\begin{bmatrix} \otimes & \times &\times \\ \otimes & \times& \times\\ 0 & \times & \times\\ 0 & \times& \times \end{bmatrix}\overset{(1,2)}{\rightarrow}\begin{bmatrix} \times & \otimes &\times \\ 0 & \times& \times\\ 0 & \times & \times\\ 0 & \otimes& \times \end{bmatrix}\overset{(1,4)}{\rightarrow}

\begin{bmatrix} \times & \otimes &\times \\ 0 & \times &\times \\ 0 & \otimes &\times \\ 0 & 0 & \times \end{bmatrix}\overset{(1,3)}{\rightarrow}\begin{bmatrix} \times & \times &\otimes \\ 0 & \times &\times \\ 0 & 0 &\times \\ 0 & 0 & \otimes \end{bmatrix}\overset{(1,4)}{\rightarrow}\begin{bmatrix} \times & \times &\times \\ 0 & \times &\times \\ 0 & 0 &\times \\ 0 & 0 &0 \end{bmatrix}

其中, \otimes 表示使用 Givens 旋转进行变换的元素。

        从上述过程可以得出:如果令 G_j 表示约化过程中的第 j 次 Givens 旋转,则 Q^TA=R 是上三角矩阵,其中 Q=G_tG_{t-1}\cdots G_{1} ,而 t 是总的旋转次数。

3. 例

        通过 Givens 旋转求解矩阵 

A=\begin{bmatrix} 6 &5 &0 \\ 5& 1& 4\\ 0&4 &3 \end{bmatrix}

的 QR 分解。

1)首先将 a_{21}=5 变换为 0 :

        取 Givens 矩阵

G_1=\begin{bmatrix} cos\theta & -sin\theta &0 \\ sin\theta&cos\theta &0 \\ 0 &0 & 1 \end{bmatrix}

其中,

r=\sqrt{6^2+5^2}\approx 7.8102

cos\theta=6/r\approx 0.7682

sin\theta=-5/r\approx -0.6402

所以有:

A_1=G_1A\approx \begin{bmatrix} 7.8102 & 4.4813 &2.5607 \\ 0 & -2.4327 &3.0729 \\ 0& 4 & 3 \end{bmatrix}

2)将 a_{32}=4 变换为 0:

        取 Givens 矩阵

G_2=\begin{bmatrix} 1 &0 &0 \\ 0& cos\theta &-sin\theta \\ 0 & sin\theta & cos\theta \end{bmatrix}

其中,

r\approx \sqrt{(-2.4327)^2+4^2}\approx 4.6817

cos\theta \approx -2.4327/r\approx -0.5196

sin\theta \approx -4/r\approx -0.8544

有:

A_2=G_2A_1\approx \begin{bmatrix} 7.8102 & 4.4813 &2.5607 \\ 0& 4.6817 &0.9664 \\ 0 &0 &-4.1843 \end{bmatrix}

3)因此有

A_2=G_2G_1A\quad \rightarrow \quad A=G_1^{-1}G_2^{-1}A_2=G_1^TG_2^TA_2

即,矩阵 A 的 QR 分解为: Q=G_1^TG_2^T , R=A_2 。

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值