11矩阵的QR分解(1)

Givens矩阵与Givens变换

1.引入

在这里插入图片描述
由图可得 [ x 2 y 2 ] = [ c o s ( θ ) s i n ( θ ) − s i n ( θ ) c o s ( θ ) ] [ x 1 y 1 ] \left[ \begin{matrix} x_2 \\ y_2 \end{matrix} \right] = \left[ \begin{matrix} cos(\theta) & sin(\theta)\\ -sin(\theta) & cos(\theta) \end{matrix} \right] \left[ \begin{matrix} x_1 \\ y_1 \end{matrix} \right] [x2y2]=[cos(θ)sin(θ)sin(θ)cos(θ)][x1y1]形如 [ c o s ( θ ) s i n ( θ ) − s i n ( θ ) c o s ( θ ) ] \left[ \begin{matrix} cos(\theta) & sin(\theta)\\ -sin(\theta) & cos(\theta) \end{matrix}\right] [cos(θ)sin(θ)sin(θ)cos(θ)]类型的矩阵被称为Givens矩阵。

2.Givens矩阵的定义

在这里插入图片描述
c 2 + s 2 = 1 c^2+s^2=1 c2+s2=1,称这样的矩阵为Givens矩阵(初等旋转矩阵),也记做 T i j = T i j ( c , s ) T_{ij}=T_{ij}(c,s) Tij=Tij(c,s)
说明:

  • 因为 c 2 + s 2 = 1 c^2+s^2=1 c2+s2=1,所以存在 θ \theta θ,使得 c = c o s ( θ ) , s = s i n ( θ ) c=cos(\theta),s=sin(\theta) c=cos(θ),s=sin(θ)
  • 二阶情况下,对应的是一个平面直角坐标系中的一个旋转变换。

性质:

  • [ T i j ( c , s ) ] − 1 = [ T i j ( c , s ) ] T = [ T i j ( c , − s ) ] , d e t [ T i j ( c , s ) ] = 1 [T_{ij}(c,s)]^{-1}=[T_{ij}(c,s)]^T=[T_{ij}(c,-s)],det[T_{ij}(c,s)]=1 [Tij(c,s)]1=[Tij(c,s)]T=[Tij(c,s)],det[Tij(c,s)]=1
  • x = [ ξ 1 ξ 2 ⋯ ξ n ] T x=\left[ \begin{matrix}\xi_1 & \xi_2\cdots \xi_n\end{matrix}\right]^T x=[ξ1ξ2ξn]T,即x是一个列向量,有 y = T i j x = [ η 1 η 2 ⋯ η n ] T y=T_{ij}x=\left[ \begin{matrix}\eta_1 & \eta_2\cdots \eta_n\end{matrix}\right]^T y=Tijx=[η1η2ηn]T,则有 η k = { ξ k k ≠ i , j c ξ i + s ξ j k = i − s ξ i + c ξ j k = j \eta_k= \begin{cases} \xi_k & k\neq i,j \\ c\xi_i+s\xi_j & k=i \\ -s\xi_i+c\xi_j & k=j \end{cases} ηk=ξkcξi+sξjsξi+cξjk=i,jk=ik=j总可以选 c = ξ i ξ i 2 + ξ j 2 , s = ξ j ξ i 2 + ξ j 2 c=\frac{\xi_i}{\sqrt{\xi_i^2+\xi_j^2}},s=\frac{\xi_j}{\sqrt{\xi_i^2+\xi_j^2}} c=ξi2+ξj2 ξi,s=ξi2+ξj2 ξj,使得 y = [ η 1 η 2 ξ i 2 + ξ j 2 ⋯ 0 η n ] T y=\left[ \begin{matrix}\eta_1 & \eta_2&\sqrt{\xi_i^2+\xi_j^2}&\cdots & 0&\eta_n\end{matrix}\right]^T y=[η1η2ξi2+ξj2 0ηn]T,其中 ξ i 2 + ξ j 2 \sqrt{\xi_i^2+\xi_j^2} ξi2+ξj2 为第i项,0为第j项

3.两个定理

  • 定理一
    x = [ ξ 1 ξ 2 ⋯ ξ n ] T x=\left[ \begin{matrix}\xi_1 & \xi_2\cdots \xi_n\end{matrix}\right]^T x=[ξ1ξ2ξn]T,存在有限个Givens矩阵的乘积 T T T,使得 T x = ∣ x ∣ e 1 Tx=|x|e_1 Tx=xe1,其中 e 1 = [ 1 , 0...0 ] e_1=[1,0...0] e1=[1,0...0]
    证明:很容易,对x做 T 12 , T 13 . . . T 1 n T_{12},T_{13}...T_{1n} T12,T13...T1n,即可得证

  • 定理二
    对任何非列零向量x,及任何单位向量z( ∣ z ∣ = 1 |z|=1 z=1),存在有限个Givens矩阵使得 T x = ∣ x ∣ z Tx=|x|z Tx=xz
    证明:对左右两面分别进行上面定理的变换,则可得到 T ( 1 ) x = ∣ x ∣ e 1 T^{(1)}x=|x|e_1 T(1)x=xe1 T ( 2 ) ∣ x ∣ z = ∣ x ∣ e 1 T^{(2)}|x|z=|x|e_1 T(2)xz=xe1 令两边相等即可得到结果

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值