opencv中使用cuda加速图像处理

opencv大多数只使用到了cpu的版本,实际上对于复杂的图像处理过程用cuda(特别是高分辨率的图像)可能会有加速效果。是否需要使用cuda需要思考:

  • 1、opencv的cuda库是否提供了想要的算子。在CUDA-accelerated Computer Vision你可以看到cv的cuda库提供了哪些方法。
  • 2、如果要使用cv的cuda库,会涉及到数据从cpu和gpu之间的交换。一张图片首先会被cpu读取到内存中,然后通过api将cpu中的数据搬运到gpu中,而cpu和gpu之间的数据搬运也是很耗时的,比如gpu_dst.download(dst_cpu)将gpu_dst数据搬运到dst_cpu,数据是8976*4960*3,耗时约37ms,如果你的图像处理比较简单,说不定数据搬运的耗时比直接在cpu上运行更长。

1、带cuda的opencv安装

这里的前提是你的nvidia驱动、cuda以及cudnn都安装完成,可以正常使用。

首先下载版本一致的opencvopencv-contrib(cuda库所在包),然后解压待用。

然后查询你显卡的Compute Capability,进入opencv-4.8.1后创建build文件夹,终端在build中打开后,执行:

cmake \ 
-D CMAKE_BUILD_TYPE=RELEASE \ 
-D BUILD_CUDA_STUBS=ON \         
-D WITH_CUDA=ON \                   
-D CUDA_ARCH_BIN=8.9 \ 
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.8.1/modules .. 

注意,CUDA_ARCH_BIN是你查询到自己显卡的Compute Capability,OPENCV_EXTRA_MODULES_PATH指向你的opencv_contrib-4.8.1/modules。(最后的..不能省略)
在这里插入图片描述
可以看到成功检测到我的11.8的cuda,但是没有cuDNN。不知道是不是新版的原因,我安装好cudnn后通过命令cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2查询cudnn版本没有任何输出,但是确实存在cudnn.h,并在在使用cuda时也没有问题,就没有管这个问题了(后面在opencv使用cuda也没有报错)。

然后:sudo make –j15,表示使用15个线程make,因cpu而异。
最后sudo make install

后续的操作参考ubuntu20.04+opencv+vscode添加环境变量。

2、测试

编写c++代码测试:

#include <opencv2/opencv.hpp>
#include <opencv2/core/cuda.hpp>

/
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是一个对称矩阵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值