可逆图像去噪——InvDN模型推理测试(详细图文教程)

本文介绍了InvDN模型在去噪方面的优越性能,特别是在SIDD数据集上的先进成果,以及其相比DANet更小的模型尺寸。文章还提到模型可以生成类似原始噪声的新噪声,增加了应用的灵活性。提供源码包和数据处理指南,包括使用OpenCV读取数据和测试推理速度。
摘要由CSDN通过智能技术生成

在这里插入图片描述

性能:InvDN的去噪性能优于多数现有的竞争模型,在SIDD数据集上实现了新的先进的结果,同时享受更少的运行时间。这表明该方法在处理真实噪声问题上具有很高的效率和准确性。

模型大小:此外,InvDN的大小远小于DANet,只有4.2%的参数数量。这意味着该模型在保持高性能的同时,还具有较小的模型大小,这对于部署在资源有限的设备上非常有利。

生成噪声:通过操纵噪声潜在表示,InvDN还能够生成与原始噪声更相似的噪声。这表明该方法不仅可以去除噪声,还可以用于生成噪声,增加了其应用的灵活性。

一、源码包

官网地址:InvDN
论文地址:论文
官方提供的源码包直接使用有些问题,我自己修改调试了代码,建议学者直接使用我提供的源码包获取方法文章末扫码到公众号中回复关键字:图像去噪InvDN。获取下载链接。

二、输入数据到网络

官网给的脚本默认读取方式是.mat数据,也可以自己修改读入代码,修改为使用OpenCV读取,在我提供的源码包中有两个脚本文件,分别为两种读取方式。

2.1 读取.mat数据

使用该方法,需要先将测试图片.png或者.jpg转为.mat格式数据。

.mat格式数据的制作教程,学者看我的另外一篇博客:.mat数据制作

转换为.mat格式数据的脚本也在我提供的源码包中:

在这里插入图片描述

在我提供的源码包里有一个我已经制作好的.mat文件,如下:

在这里插入图片描述

2.1.1修改配置文件

配置文件位置如下:

在这里插入图片描述

在这里插入图片描述

上面的预训练权重在我提供的源码包中pretrained文件夹下:

在这里插入图片描述

2.1.2参数修改

为了Debug调试方便,我把配置文件路径直接添加到了test_Real_Single.py文件中,如下:

在这里插入图片描述
在这里插入图片描述
修改好上面参数后直接运行脚本

在这里插入图片描述
在这里插入图片描述

运行结束后会在resurt_imags文件下获得测试结果:

在这里插入图片描述

2.2 CV2 读取数据

上面的这种方法,需要先转为.mat格式才能读取,这里改了的读取代码,使用OpenCv2直接读取图片推理测试。

2.2.1 修改参数

学者使用的时候,只需要修改导入噪声图像的路径即可,如下:

在这里插入图片描述

运行结束后同样会在resurt_imags文件下保存推理结果。

2.2.2 推理速度测试

该脚本文件中加了测试推理时间的代码,如下,在GPU上测试的结果:

在这里插入图片描述

在这里插入图片描述

三、测试结果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

四、总结

以上就是可逆图像去噪——InvDN模型推理测试的过程,我没有训练,目前只是测试的该方法效果。

总结不易,多多支持,谢谢!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值