💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》
一、源码包准备
官网源码包下载的链接为:Omni-SR
我提供的源码包获取方法为文章末扫码到公众号中回复关键字:超分辨率重建Omni。获取下载链接。
论文地址:https://arxiv.org/pdf/2304.10244.pdf
下载我提供的源码包,解压后的样子如下:
官网提供的模型权重已经下载打包在源码包中,位于train_logs文件夹中,如下:
测试集位于文件夹中benchmark文件夹下:
二、测试环境
下面是我自己测试的环境,仅供参考:
三、推理测试
3.1 参数修改
参数的修改在test.py脚本中,如下:
还有一些参数在data_tools/test_dataloader_rcan.py脚本中,如下:
模型推理图片的具体代码在test_scripts/tester_Matlab.py脚本中,如下:
假设输入图片大小为400300,超分2倍,此模型会将输入图像先拆分为6464小块图像超分到128128(2倍),最后将超分后的小块图像合并为800600大小图像。
3.2 配置文件修改
下面是配置文件需要添加的参数
3.3 测试集准备
自己制作的测试集要分别存放在HR 和 LR 文件夹下,关于HR中的图像可以用我源码包中的Image_Resize.py脚本生成上采样图像。
关于Image_Resize.py脚本的使用方法,修改低分辨率图片文件夹路径和导出路径,还有上采样倍数,如下:
3.4 测试
上面都准备好后直接运行test.py脚本,就开始测试了。
3.5 保存结果
最终的测试结果会保存到根目录下的SR文件夹中,对应名字去找。
3.6 推理速度
本次测试,仅在GPU上测试。
GPU测试环境:Nvidia GeForce RTX 3050,测试图片6464,超分2倍,推理时间:19ms/fps; 测试图像400300,超分2倍,推理时间为:1551.5ms/fps。
3.7 超分效果
这里提供超分2倍的效果,如果要超分4倍,只需要在配置文件中修改对应超分模型即可。
四、总结
以上就是超分辨率重建Omni-SR网络的推理测试过程,关于推理部分,可以自己修改代码,导入模型后推理,再经过后处理直接保存推理结果,不进行PSNR和SSIM分析。
感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖
关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!