2016年《A Time-Weighted Dynamic Time Warping Method for Land-Use and Land-Cover Mapping》:TWDTW

期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

作者:Victor Maus、Gilberto Câmara、Ricardo Cartaxo、Alber Sanchez、Fernando M. Ramos、Gilberto R. de Queiroz

Introduction

        第一段讲述了:高质量的 LULC 数据集的重要性、卫星遥感对观测土地的重要性、遥感数据可以被组织成 3维数据(空间2维+时间1维)。

        LULC:Land-use and Land-cover,土地利用和土地覆盖

        介绍了一些处理 SITS 的算法,并引出 DTW 的优越性

        SITS:satellite image time-series,卫星影像时间序列

         先扬后抑,引出主角:

        DTW 在形状匹配(shape matching)上的应用效果很好,但是 DTW 本身并不适用于遥感时序分类(RS Time Series Classification)。

       每个地物类型都会有一个独特的物候周期(phenological cycle)。因此,一个好的 时序地物分类模型,应当 平衡好 形状匹配 和 时间对齐(temporal alignment) 之间的关系比如,虽然作物每年的生长周期可能会变化,但变化不会很大。如果有一个地物序列,它的形状和大豆序列相似,但是周期比大豆(90至120天)长很多,那这个地物大概率不是大豆。然而, DTW 在寻找两个序列之间的最佳对齐时,会在一定程度上扭曲时间

       为了解决这个问题,本文引入了一个时间限制(time constraint)。

        前人研究存在的不足:François P 等人(2012) 为了避免不一致的时间扭曲(inconsistent temporal distortions),引入了一个 最大时间间隔 的限制。但是这种限制,会减弱 DTW 的性能。此外,François P 等人 只利用了一年的时序数据进行地物分类,没有考虑到那些周期大于一年的作物。

F. Petitjean, J. Inglada, and P. Gancarski, “Satellite image time series analysis under time warping,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3081–3095, Aug. 2012.

2012年《Satellite Image Time Series Analysis Under Time Warping》:动态时间规整(DTW)在遥感中的应用      ww ^的CSDN博客

        注意:François P 等人提出的 DateDiff( Date(i), Date(j) ) < ∆t ,可以针对不规则时间采样。这篇文章是针对规则采样的,即假设遥感影像采样间隔固定且影像没有缺失。

        本研究如何解决前人研究的不足:不同于 将遥感时序分割为固定的部分,本研究 对遥感时序的时间段(temporal segments)进行分类。这种方法既可以灵活地考虑多年作物、单季作物和双季作物,还能考虑到 森林、牧场 等 只有少量训练样本的地物类型。

 

        本研究的主要贡献:证明了 把一些数据挖掘方法(data mining method)应用到遥感时序 LULC 分类时,加入时间限制(temporal constraint)可以提高性能。

Methods   方法

铺垫

        由于卫星以固定的周期环绕地球,卫星数据可以在 “时间-空间” 的空间中映射成三维矩阵(Fig.1.(a))。每个空间位置为 (x,y) 的像元,它在连续时间中的值,都会构成了一个 SITS(Fig.1.(b))。我们可以从这些时间序列中提取 LULC 信息。比如,某块土地,2000 ~ 2002 年被 森林 覆盖,2002年森林被砍伐,2003 ~ 2005 年被用于 牛群养殖(牧场),2006 ~ 2008 年又被用于 作物种植。

         设是 空间位置 (x,y) 的像元在 连续时间内的时间序列,表示 时刻 卫星的观测数据。将所有的空间覆盖组合起来,就会得到一个时间序列的集合

         本研究假设,由于人类行为的干预,每个土地利用类型都具有时间连续性一个森林区域不会一夜之间变成一片草地。土地利用的变化需要时间。因此,本研究认为,每个时间序列的闭合区间(closed intervals of each time series)都能与一个特定的 LULC 类型相关联。比如,在一个十年的时间段中,某块土地,前五年被森林覆盖,然后用于养殖牛群两年,接着又用于大豆种植三年。本研究希望 将上述每个时间间隔与一个土地类型相关联。

          光学遥感数据会受到云层的影像,从而在 SITS 中引入大量噪声。年度气候变化也会改变植物的物候周期,导致其时间序列的周期和强度在年与年之间并不匹配。为了将 SITS 的时间段 与 LULC 类型相关联,就需要一个可以处理噪声和异相(out-of-phase)时序的方法。本研究选择 DTW 来处理这些问题。

        François P  等人 应用 DTW 来对 SITS 的 区间(interval )进行分类。这种情况下,两个序列的长度相差不大,且它们的第一点和最后一点必须匹配在实际应用中,由气候条件和土地管理等因素的影响,作物的物候周期在不同年份可能会有变化。比如,植物绿化(greenup)和休眠(dormancy)期的转变。将时序分割成区间,可能会导致物候周期不匹配,如图 Fig. 2(a) 所示。

        为了避免这种问题,本文采用 Müller M(2007)提出的 开放边界版DTW(open boundary version of DTW)。该方法 不要求两个序列等长,且可以找到 某种 pattern 在一个长时序中的所有可能的匹配。如图 Fig. 2(b) 所示。

M. Müller, Information Retrieval for Music and Motion. New York, NY, USA: Springer, 2007

具体

        使用 开放边界DTW,需要将 待测像元的时间序列的子序列 与 预期类别的样本 进行匹配。

        对于每个 预期类别 c,构造一个 时间序列样本集,其中,是一个 时间序列样本(pattern), (即 pattern 比 卫星时序V 短很多)。q 表示该类别的 pattern 数量。这些样本用于 对 时序 V 的 区间 进行分类,V∈S。

        对于每个像元,通过下述两个步骤进行分类:

步骤 1 :DTW Alignment

        首先,构建一个 n×m 的 距离矩阵,其元素之间的绝对距离,

        然后,通过一种最小距离的递归和,从 计算一个 累积代价矩阵(accumulated cost matrix)D。比如下式。

 

         图3 为一个 累积代价矩阵 的例子。DTW alignment 沿着 累积代价矩阵D 中 代价较低(黑色)的 “山谷” 运行,“山谷” 的数量与 U 和 V 之间的匹配数量 相同。D 中的第 k 个 “山谷”,是 样本U 与 待测像元 SITS 的一个子序列 之间的 一个匹配(alignment),该匹配 与一个 DTW  距离相关联,分别是 第 k 个序列的 起点 和 终点。 

 

        累积代价矩阵最后一行中的每一个最小值点都产生了一个匹配。该匹配所对应的分别由下式计算:,其中,K 表示 累积代价矩阵最后一行中的最小值点的数量。

        采用一种 反向算法 来绘制 warping path。表示 D 中第 k 个低代价 “山谷”。该算法从开始,到结束。L 表示该匹配的最后一点。warping path包括了 在第k个匹配中 两个序列之间的所有匹配点。

 

        上式为一种反向算法。式中的后向操作 满足 单调性原则(Müller M,2007),即 两个序列之间的 匹配 需要维持序列原本的顺序

 M. Müller, Information Retrieval for Music and Motion. New York, NY, USA: Springer, 2007

        原始 DTW 并不考虑两个序列之间的相位差别。然而,LULC 类别 一般会有独特的物候周期,这种周期会和 空间-时间 分类相关。

         本文基于卫星影像中每个像元的 日期,提出一种 时间权重版 DTW(time-weighted extension of DTW,TWDTW)。TWDTW 在 累积代价矩阵中 加入了一个 时间代价 w,于是 累积代价矩阵的元素 变为

         本文 设计了两种 计算 时间代价 的方法:(1) 线性模型:;(2) logistic 模型:,β 表示midpoint,α 表示 steepness。其中,表示 pattern 中第 i 个元素的日期,表示 待测像元 SITS 中第 j 个元素的日期;为 这两个元素的间隔时间,单位为天。

         本文使用不同的参数 β 和 α 进行了多次试验,然后使用精度最好的一组 β 和 α 来设置 logistic TWDTW 的参数。

 步骤2:Map Building

         DTW 算法 将每个 pattern 分别匹配(每个pattern都与别的pattern分开匹配)到 输入序列。这样,输入序列 V 的每个 区间 都能匹配不同的 pattern。把与 输入序列 V 的某个区间 拟合最好(与该区间的 DTW 距离最小)的那种 pattern 所对应的 LULC 类别,作为该区间所关联的 LULC 类别。找到了最佳拟合之后,就可以绘制出某个时间段内的 LULC 分类图。

         为了将本文的结果与其他 LULC 产品进行对比,本文生产了 2000年7月 - 2001年6月 农业日历(灰色区域) 的分类图。本文找到了与 农业日历子序列的 DTW 距离最小的 pattern。下图显示了 U1 和 U2 两个 pattern 的匹配情况。这两个 pattern 一部分处在相同的农业年(2000年7月 - 2001年6月)。我们选择了 DTW 距离最小的那个pattern,即 在这个时间段内 与待测序列最相似的 pattern。

 

Experiment   实验

        比较了 4 种 DTW 方法:① 原始 DTW,没有任何时间限制条件,即 w = 0;② 由 François P 等人 提出的加入 最大时间间隔 的限制条件的 maximum delay TWDTW;③ 线性 TWDTW;④ logistic TWDTW

        基于 2000年7月 - 2013年6月的 MODIS 数据(MOD13Q1 16 day 250 m),构建 增强型植被指数 EVI。EVI 时序很容易受到大气条件(如 云层覆盖、气溶胶的程辐射)的影响。为了减小大气影响带来的杂散振荡(spurious oscillation),本文使用了一种 离散小波分解(discrete wavelet decomposition),将时序中小波频率最高的部分去除,达到滤波效果。

        研究区域为 Porto dos Gaúchos,Amazonia。选择了该区域内最重要的几个地物类型:forest、 secondary vegetation、pasture、single cropping、double croppin。

        本文基于D. Arvor等人的研究建立了上述各地物类型的 temporal pattern 。本文将一些地物类型进行了合并,比如 soybean 和 cotton 被合并为 single cropping,soybean–cotton 和 soybean–maize 被合并为 double cropping。最终结果如下图所示。

D. Arvor and M. Jonathan, M. S. o. P. Meirelles, V. Dubreuil, and L. Durieux, “Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil,” Int. J. Remote Sens., vol. 32, no. 22, pp. 7847–7871, 2011.

 

Result   结果

        使用了40个随机选择的地点,从这些地点2001年到2014年的560个样本中,通过Google Earth 目视解译,分类出489个样本。大部分未分类样本是因为 该区域9月-3月的雨季会导致生长周期内存在云污染。

global accuracy

       ① 原始 DTW 为 70.14%;② 最大时间间隔为 100天 时 maximum delay TWDTW 的精度最高(84.66%);③ 线性 TWDTW 为 81.6%。;④ logistic TWDTW 的参数是 α = 0.1、β = 100 天 时表现最好(87.32%)。

       由下图(Fig.6.)可见,对于logistic 时间权重:time warps 小于 60 天时,代价较小;time warps 变大时,代价显著增大。

最佳匹配 示例

       TWDTW 精度较高的一部分原因是 样本(pattern)的质量较高。TWDTW 使用 pattern 的长度 作为时间限制条件。

       没有时间限制的 原始 DTW(方法①),在寻找最佳拟合时,会 缩短 / 伸长 pattern。这种方法在 高度变化的信号(比如 语音)的匹配中效果很好,但是在处理 structured patterns(比如 LULC 信号)时效果不佳。

       下图(Fig.7.)显示了 没有时间限制的原始 DTW 、TWDTW,这两种版本的DTW 对 4种地物类型 的最佳匹配。可见,① 没有时间限制的DTW(Fig. 7(a))存在过拟合现象:forest 和 pasture 信号被缩短了,single cropping 匹配到了 double cropping 的第一个周期。

Accuracy Assessment

        精度(accuracy)是基于 由Landsat影像分类出的 489 个参考样本 计算的。

       总体而言,在 4 种方法中,④ logistic TWDTW 的精度最高

       与 ② maximum delay TWDTW 相比,对于 double cropping,敏感性差不多(生产者精度 90.43%),但可信度更高(用户精度 92.04% > 88.89%)。

       与 ③ 线性 TWDTW 相比,对于 double cropping 和 forest,logistic TWDTW 的 用户精度更低,生产者精度更高。这意味着,logistic TWDTW 分类结果中包含了更多的真实像元,但可信度更低。

混淆矩阵(confusion matrix)

可信度(confidence)

       ① 没有时间限制的DTW 的表现最差,把 57 个 double cropping 像元 错分成了 single cropping。③ 线性 TWDTW 把 24 个 double cropping 和 34 个 pasture 像元 错分成了 single cropping;它在 single cropping 的可信度只有 60.27%(Table I)。④ logistic TWDW 把 10 个 double cropping 和 18 个 pasture 像元 错分成了 single cropping;它在 single cropping 的可信度为75.00%,比 ③ 略高。② maximum time delay DTW 把 9 个 double cropping 和 18 个 pasture 像元 错分成了 single cropping。② 与 ④ 的可信度 差不多。

敏感度(sensitivity)

        ④ logistic TWDW 的 敏感度 比 ② maximum time delay DTW 更高。在 99 个真实 single cropping中,④ 将 11 个像元 分成了double cropping,将 6 个分成了 pasture,7 个未分类。

与其他产品的对比

MODIS land cover collection 5, Plant Functional Type (PFT) 500 m

M. A. Friedl et al., “Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets,” Remote Sens. Environ., vol. 114, no. 1, pp. 168–182, 2010.

 

Amazon Monitoring Program PRODES

INPE (National Institute for Space Research, Brazil). (2014). Amazon Deforestation Monitoring Project—PRODES [Online]. Available: www. obt.inpe.br/prodes

Municipal Agricultural Production Survey (PAM),2001-2003

IBGE (Brazilian Institute of Geography, and Statistics). (2014). Municipal Agricultural Production—PAM [Online]. Available: www. sidra.ibge.gov.br/bda/

logistic TWDTW 产品

 

Discussion   讨论

4 种 DTW 的对比

与其他研究的比较

 

挑战

 

Conclusion   结论

        简介本文 提出了什么方法、做出了什么改进、取得了什么效果。

 

        精度评价结果 进一步 佐证了 TWDTW 的能力。

 

        TWDTW 的 大区域制图 潜力。

        可能的提高精度的方法。 

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值