高等数学----多元函数微分学的难点重点详细思考
简介
本节主要对自己在多元函数微分上遇到的难题和知识点,希望能帮助到考研的人,更希望有缘人觉的有用点赞和关注么么哒,我会一直更新内容,大家有不懂的可以留言讨论,或者让我出一些你不懂的知识点的解析和例题解析。
本文章知识点
- 梯度和方向导数的详细理解。
- 偏导数,连续性,可微分 知识点的详细解释。
- 二元函数的极限
- 拉格朗日乘数法
1:梯度和方向导数的详细理解
梯度
梯度:
总结 方向导数就是偏导数沿着某一直线在斜率的变化,梯度就是一个向量。其中自己理解一下,其实理解了还是比较简单的。
2: 偏导数,连续性,可微分 知识点的详细解释。
连续性,当x和y 同时趋近一个点时,是否存在极限,或者等于断点的值,例如
解题思路
多元函数偏导,多元函数偏导,就是利用导数的性质。对单个变量进行求导。
例题:
总结,先熟悉一下导数的定义,再明白偏导其实就是分别对单个变量进行求导,就可以很清楚的明白。
全微分的理解
全微分的定义和微分的定义一样就是多了变量而已。下面图解
例题:
总结,需要弄明白全微分的定义,然后按照验证思想,就可以很好的求证出在某点是否可微分。
2: 多元函数极值的详细解释
多元函数极值,主要根据公式进行求证,下面会贴上公式。
4:拉格朗日乘法的详细解释和使用场景
例题:
总结。先利用公式求出λ ,在带入偏导数求出x,y ,z 然后代数原始式中,求出 最小值。大家多自己写写,我自己总结也是自己不懂的,然后记录下来。