张宇1000题高等数学 第十三章 多元函数微分学

目录

A A A

5.利用变量代换 u = x , v = y x u=x,v=\cfrac{y}{x} u=x,v=xy,可将方程 x ∂ z ∂ x + y ∂ z ∂ y = z x\cfrac{\partial z}{\partial x}+y\cfrac{\partial z}{\partial y}=z xxz+yyz=z化为新方程(  )。
( A ) u ∂ z ∂ u = z ; (A)u\cfrac{\partial z}{\partial u}=z; (A)uuz=z;
( B ) v ∂ z ∂ v = z ; (B)v\cfrac{\partial z}{\partial v}=z; (B)vvz=z;
( C ) u ∂ z ∂ v = z ; (C)u\cfrac{\partial z}{\partial v}=z; (C)uvz=z;
( D ) v ∂ z ∂ u = z . (D)v\cfrac{\partial z}{\partial u}=z. (D)vuz=z.

  由复合函数微分法则可得 ∂ z ∂ x = ∂ z ∂ u ⋅ 1 + ∂ z ∂ v ⋅ ( − y x 2 ) , ∂ z ∂ y = 1 x ⋅ ∂ z ∂ v \cfrac{\partial z}{\partial x}=\cfrac{\partial z}{\partial u}\cdot1+\cfrac{\partial z}{\partial v}\cdot\left(-\cfrac{y}{x^2}\right),\cfrac{\partial z}{\partial y}=\cfrac{1}{x}\cdot\cfrac{\partial z}{\partial v} xz=uz1+vz(x2y),yz=x1vz,于是 x ∂ z ∂ x + y ∂ z ∂ y = x ⋅ ∂ z ∂ u − y x ⋅ ∂ z ∂ v + y x ⋅ ∂ z ∂ v = x ∂ z ∂ u = z x\cfrac{\partial z}{\partial x}+y\cfrac{\partial z}{\partial y}=x\cdot\cfrac{\partial z}{\partial u}-\cfrac{y}{x}\cdot\cfrac{\partial z}{\partial v}+\cfrac{y}{x}\cdot\cfrac{\partial z}{\partial v}=x\cfrac{\partial z}{\partial u}=z xxz+yyz=xuzxyvz+xyvz=xuz=z
  又 u = x u=x u=x,故新方程为 u ∂ z ∂ u = z u\cfrac{\partial z}{\partial u}=z uuz=z。(这道题主要利用了复合函数求导法则求解

14.设函数 z = z ( x , y ) z=z(x,y) z=z(x,y) G ( x , y , z ) = F ( x y , y z ) = 0 G(x,y,z)=F(xy,yz)=0 G(x,y,z)=F(xy,yz)=0确定,其中 F F F为可微函数,且 G z ′ ≠ 0 G_z'\ne0 Gz=0,求 x ∂ z ∂ x − y ∂ z ∂ y x\cfrac{\partial z}{\partial x}-y\cfrac{\partial z}{\partial y} xxzyyz

  由于 F ( x y , y z ) = 0 F(xy,yz)=0 F(xy,yz)=0,可得 G x ′ = F 1 ′ ⋅ y , G y ′ = F 1 ′ ⋅ x + F 2 ′ ⋅ y , G x ′ = F 2 ′ ⋅ y G'_x=F'_1\cdot y,G'_y=F'_1\cdot x+F'_2\cdot y,G'_x=F'_2\cdot y Gx=F1y,Gy=F1x+F2y,Gx=F2y。又 ∂ z ∂ x = − G x ′ G z ′ = − F 1 ′ F 2 ′ , ∂ z ∂ y = − G y ′ G z ′ = − F 1 ′ ⋅ x + F 2 ′ ⋅ y F 2 ′ ⋅ y \cfrac{\partial z}{\partial x}=-\cfrac{G'_x}{G'_z}=-\cfrac{F'_1}{F'_2},\cfrac{\partial z}{\partial y}=-\cfrac{G'_y}{G'_z}=-\cfrac{F'_1\cdot x+F'_2\cdot y}{F'_2\cdot y} xz=GzGx=F2F1,yz=GzGy=F2yF1x+F2y,因此 x ∂ z ∂ x − y ∂ z ∂ y = z x\cfrac{\partial z}{\partial x}-y\cfrac{\partial z}{\partial y}=z xxzyyz=z。(这道题主要利用了隐函数求导求解

B B B

3.设 y = f ( x , t ) y=f(x,t) y=f(x,t),而是 t t t由方程 F ( x , y , t ) = 0 F(x,y,t)=0 F(x,y,t)=0所确定的 x , y x,y x,y的函数,其中 f , F f,F f,F均具有一阶连续偏导数,则 d y d x = \cfrac{\mathrm{d}y}{\mathrm{d}x}= dxdy=(  )。
( A ) f x ′ F t ′ + f t ′ F x ′ F t ′ ; (A)\cfrac{f'_xF'_t+f'_tF'_x}{F'_t}; (A)FtfxFt+ftFx;
( B ) f x ′ F t ′ − f t ′ F x ′ F t ′ ; (B)\cfrac{f'_xF'_t-f'_tF'_x}{F'_t}; (B)FtfxFtftFx;
( C ) f x ′ F t ′ + f t ′ F x ′ f t ′ F y ′ + F t ′ ; (C)\cfrac{f'_xF'_t+f'_tF'_x}{f'_tF'_y+F'_t}; (C)ftFy+FtfxFt+ftFx;
( D ) f x ′ F t ′ − f t ′ F x ′ f t ′ F y ′ + F t ′ . (D)\cfrac{f'_xF'_t-f'_tF'_x}{f'_tF'_y+F'_t}. (D)ftFy+FtfxFtftFx.

  方程两边求全微分,得 F x ′ d x + F y ′ d y + F t ′ d t = 0 F'_x\mathrm{d}x+F'_y\mathrm{d}y+F'_t\mathrm{d}t=0 Fxdx+Fydy+Ftdt=0,则 d t = − F x ′ F t ′ d x − F y ′ F t ′ d y \mathrm{d}t=-\cfrac{F'_x}{F'_t}\mathrm{d}x-\cfrac{F'_y}{F'_t}\mathrm{d}y dt=FtFxdxFtFydy,又 d y = f x ′ d x + f t ′ d t = f x ′ d x − f t ′ ( F x ′ F t ′ d x + F y ′ F t ′ d y ) \mathrm{d}y=f'_x\mathrm{d}x+f'_t\mathrm{d}t=f'_x\mathrm{d}x-f'_t\left(\cfrac{F'_x}{F'_t}\mathrm{d}x+\cfrac{F'_y}{F'_t}\mathrm{d}y\right) dy=fx

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值