张宇1000题高等数学 第十三章 多元函数微分学

目录

A A A

5.利用变量代换 u = x , v = y x u=x,v=\cfrac{y}{x} u=x,v=xy,可将方程 x ∂ z ∂ x + y ∂ z ∂ y = z x\cfrac{\partial z}{\partial x}+y\cfrac{\partial z}{\partial y}=z xxz+yyz=z化为新方程(  )。
( A ) u ∂ z ∂ u = z ; (A)u\cfrac{\partial z}{\partial u}=z; (A)uuz=z;
( B ) v ∂ z ∂ v = z ; (B)v\cfrac{\partial z}{\partial v}=z; (B)vvz=z;
( C ) u ∂ z ∂ v = z ; (C)u\cfrac{\partial z}{\partial v}=z; (C)uvz=z;
( D ) v ∂ z ∂ u = z . (D)v\cfrac{\partial z}{\partial u}=z. (D)vuz=z.

  由复合函数微分法则可得 ∂ z ∂ x = ∂ z ∂ u ⋅ 1 + ∂ z ∂ v ⋅ ( − y x 2 ) , ∂ z ∂ y = 1 x ⋅ ∂ z ∂ v \cfrac{\partial z}{\partial x}=\cfrac{\partial z}{\partial u}\cdot1+\cfrac{\partial z}{\partial v}\cdot\left(-\cfrac{y}{x^2}\right),\cfrac{\partial z}{\partial y}=\cfrac{1}{x}\cdot\cfrac{\partial z}{\partial v} xz=uz1+vz(x2y),yz=x1vz,于是 x ∂ z ∂ x + y ∂ z ∂ y = x ⋅ ∂ z ∂ u − y x ⋅ ∂ z ∂ v + y x ⋅ ∂ z ∂ v = x ∂ z ∂ u = z x\cfrac{\partial z}{\partial x}+y\cfrac{\partial z}{\partial y}=x\cdot\cfrac{\partial z}{\partial u}-\cfrac{y}{x}\cdot\cfrac{\partial z}{\partial v}+\cfrac{y}{x}\cdot\cfrac{\partial z}{\partial v}=x\cfrac{\partial z}{\partial u}=z xxz+yyz=xuzxyvz+xyvz=xuz=z
  又 u = x u=x u=x,故新方程为 u ∂ z ∂ u = z u\cfrac{\partial z}{\partial u}=z uuz=z。(这道题主要利用了复合函数求导法则求解

14.设函数 z = z ( x , y ) z=z(x,y) z=z(x,y) G ( x , y , z ) = F ( x y , y z ) = 0 G(x,y,z)=F(xy,yz)=0 G(x,y,z)=F(xy,yz)=0确定,其中 F F F为可微函数,且 G z ′ ≠ 0 G_z'\ne0 Gz=0,求 x ∂ z ∂ x − y ∂ z ∂ y x\cfrac{\partial z}{\partial x}-y\cfrac{\partial z}{\partial y} xxzyyz

  由于 F ( x y , y z ) = 0 F(xy,yz)=0 F(xy,yz)=0,可得 G x ′ = F 1 ′ ⋅ y , G y ′ = F 1 ′ ⋅ x + F 2 ′ ⋅ y , G x ′ = F 2 ′ ⋅ y G'_x=F'_1\cdot y,G'_y=F'_1\cdot x+F'_2\cdot y,G'_x=F'_2\cdot y Gx=F1y,Gy=F1x+F2y,Gx=F2y。又 ∂ z ∂ x = − G x ′ G z ′ = − F 1 ′ F 2 ′ , ∂ z ∂ y = − G y ′ G z ′ = − F 1 ′ ⋅ x + F 2 ′ ⋅ y F 2 ′ ⋅ y \cfrac{\partial z}{\partial x}=-\cfrac{G'_x}{G'_z}=-\cfrac{F'_1}{F'_2},\cfrac{\partial z}{\partial y}=-\cfrac{G'_y}{G'_z}=-\cfrac{F'_1\cdot x+F'_2\cdot y}{F'_2\cdot y} xz=GzGx=F2F1,yz=GzGy=F2yF1x+F2y,因此 x ∂ z ∂ x − y ∂ z ∂ y = z x\cfrac{\partial z}{\partial x}-y\cfrac{\partial z}{\partial y}=z xxzyyz=z。(这道题主要利用了隐函数求导求解

B B B

3.设 y = f ( x , t ) y=f(x,t) y=f(x,t),而是 t t t由方程 F ( x , y , t ) = 0 F(x,y,t)=0 F(x,y,t)=0所确定的 x , y x,y x,y的函数,其中 f , F f,F f,F均具有一阶连续偏导数,则 d y d x = \cfrac{\mathrm{d}y}{\mathrm{d}x}= dxdy=(  )。
( A ) f x ′ F t ′ + f t ′ F x ′ F t ′ ; (A)\cfrac{f'_xF'_t+f'_tF'_x}{F'_t}; (A)FtfxFt+ftFx;
( B ) f x ′ F t ′ − f t ′ F x ′ F t ′ ; (B)\cfrac{f'_xF'_t-f'_tF'_x}{F'_t}; (B)FtfxFtftFx;
( C ) f x ′ F t ′ + f t ′ F x ′ f t ′ F y ′ + F t ′ ; (C)\cfrac{f'_xF'_t+f'_tF'_x}{f'_tF'_y+F'_t}; (C)ftFy+FtfxFt+ftFx;
( D ) f x ′ F t ′ − f t ′ F x ′ f t ′ F y ′ + F t ′ . (D)\cfrac{f'_xF'_t-f'_tF'_x}{f'_tF'_y+F'_t}. (D)ftFy+FtfxFtftFx.

  方程两边求全微分,得 F x ′ d x + F y ′ d y + F t ′ d t = 0 F'_x\mathrm{d}x+F'_y\mathrm{d}y+F'_t\mathrm{d}t=0 Fxdx+Fydy+Ftdt=0,则 d t = − F x ′ F t ′ d x − F y ′ F t ′ d y \mathrm{d}t=-\cfrac{F'_x}{F'_t}\mathrm{d}x-\cfrac{F'_y}{F'_t}\mathrm{d}y dt=FtFxdxFtFydy,又 d y = f x ′ d x + f t ′ d t = f x ′ d x − f t ′ ( F x ′ F t ′ d x + F y ′ F t ′ d y ) \mathrm{d}y=f'_x\mathrm{d}x+f'_t\mathrm{d}t=f'_x\mathrm{d}x-f'_t\left(\cfrac{F'_x}{F'_t}\mathrm{d}x+\cfrac{F'_y}{F'_t}\mathrm{d}y\right) dy=fxdx+ftdt=fxdxft(FtFxdx+FtFydy),解得 d y d x = f x ′ F t ′ − f t ′ F x ′ f t ′ F y ′ + F t ′ \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{f'_xF'_t-f'_tF'_x}{f'_tF'_y+F'_t} dxdy=ftFy+FtfxFtftFx,故选 ( D ) (D) (D)。(这道题主要利用了隐函数求导求解

4.设函数 u = u ( x , y ) u=u(x,y) u=u(x,y)满足 ∂ 2 u ∂ x 2 = ∂ 2 u ∂ y 2 \cfrac{\partial^2u}{\partial x^2}=\cfrac{\partial^2u}{\partial y^2} x22u=y22u u ( x , 2 x ) = x , u 1 ′ ( x , 2 x ) = x 2 u(x,2x)=x,u'_1(x,2x)=x^2 u(x,2x)=x,u1(x,2x)=x2,其中 u u u具有二阶连续偏导数,则 u 11 ′ ′ ( x , 2 x ) = u''_{11}(x,2x)= u11(x,2x)=(  )。
( A ) 4 3 x ; (A)\cfrac{4}{3}x; (A)34x;
( B ) − 4 3 x ; (B)-\cfrac{4}{3}x; (B)34x;
( C ) 3 4 x ; (C)\cfrac{3}{4}x; (C)43x;
( D ) − 3 4 x . (D)-\cfrac{3}{4}x. (D)43x.

  等式 u ( x , 2 x ) = x u(x,2x)=x u(x,2x)=x两边对 x x x求导得 u 1 ′ + 2 u 2 ′ = 1 u'_1+2u'_2=1 u1+2u2=1,两边再对 x x x求导得 u 11 ′ ′ + 2 u 12 ′ ′ + 2 u 21 ′ ′ + 4 u 22 ′ ′ = 0 u''_{11}+2u''_{12}+2u''_{21}+4u''_{22}=0 u11+2u12+2u21+4u22=0,等式 u 1 ′ ( x , 2 x ) = x 2 u'_1(x,2x)=x^2 u1(x,2x)=x2两边对 x x x求导得 u 11 ′ ′ + 2 u 12 ′ ′ = 2 x u''_{11}+2u''_{12}=2x u11+2u12=2x,代入得 u 11 ′ ′ ( x , 2 x ) = − 4 3 x u''_{11}(x,2x)=-\cfrac{4}{3}x u11(x,2x)=34x。(这道题主要利用了方程求导法则求解

32.设 f ( x , y ) f(x,y) f(x,y)在点 O ( 0 , 0 ) O(0,0) O(0,0)处的某邻域 U U U内连续,且 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) − x y x 2 + y 2 = a \lim\limits_{(x,y)\to(0,0)}\cfrac{f(x,y)-xy}{x^2+y^2}=a (x,y)(0,0)limx2+y2f(x,y)xy=a,常数 a > 1 2 a>\cfrac{1}{2} a>21。讨论 f ( 0 , 0 ) f(0,0) f(0,0)是否为 f ( x , y ) f(x,y) f(x,y)的极值?若是极值,判断是极大值还是极小值?

  由 lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) − x y x 2 + y 2 = a \lim\limits_{(x,y)\to(0,0)}\cfrac{f(x,y)-xy}{x^2+y^2}=a (x,y)(0,0)limx2+y2f(x,y)xy=a,知 f ( x , y ) − x y x 2 + y 2 = a + α \cfrac{f(x,y)-xy}{x^2+y^2}=a+\alpha x2+y2f(x,y)xy=a+α,其中 lim ⁡ ( x , y ) → ( 0 , 0 ) α = 0 \lim\limits_{(x,y)\to(0,0)}\alpha=0 (x,y)(0,0)limα=0
  再令 a = 1 2 + b , b > 0 a=\cfrac{1}{2}+b,b>0 a=21+b,b>0,于是上式可改写为 f ( x , y ) = x y + ( 1 2 + b + α ) ( x 2 + y 2 ) f(x,y)=xy+\left(\cfrac{1}{2}+b+\alpha\right)(x^2+y^2) f(x,y)=xy+(21+b+α)(x2+y2)
  由 f ( x , y ) f(x,y) f(x,y)的连续性,有 f ( 0 , 0 ) = lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) = 0 f(0,0)=\lim\limits_{(x,y)\to(0,0)}f(x,y)=0 f(0,0)=(x,y)(0,0)limf(x,y)=0
  另一方面,由 lim ⁡ ( x , y ) → ( 0 , 0 ) α = 0 \lim\limits_{(x,y)\to(0,0)}\alpha=0 (x,y)(0,0)limα=0知,存在点 ( 0 , 0 ) (0,0) (0,0)处的去心邻域 U ˚ δ ( 0 ) \mathring{U}_\delta(0) U˚δ(0),当 ( x , y ) ∈ U ˚ δ ( 0 ) (x,y)\in\mathring{U}_\delta(0) (x,y)U˚δ(0)时,有 ∣ α ∣ < b 2 |\alpha|<\cfrac{b}{2} α<2b,故在 U ˚ δ ( 0 ) \mathring{U}_\delta(0) U˚δ(0)内, f ( x , y ) > 0 f(x,y)>0 f(x,y)>0,所以 f ( 0 , 0 ) f(0,0) f(0,0) f ( x , y ) f(x,y) f(x,y)的极小值。(这道题主要利用了极限定义求解

39.求正数 a , b a,b a,b的值,使得椭圆 x 2 a 2 + y 2 b 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1 a2x2+b2y2=1包含圆 x 2 + y 2 = 2 y x^2+y^2=2y x2+y2=2y,且面积最小。

  如下图,由于所求椭圆必须包含圆 x 2 + y 2 = 2 y x^2+y^2=2y x2+y2=2y,并与之相切。

在这里插入图片描述

  故在椭圆上的任意一点 ( x , y ) (x,y) (x,y)处满足 f ( x , y ) = x 2 + ( y − 1 ) 2 ⩾ 1 f(x,y)=x^2+(y-1)^2\geqslant1 f(x,y)=x2+(y1)21。这就是说函数 f ( x , y ) = x 2 + ( y − 1 ) 2 f(x,y)=x^2+(y-1)^2 f(x,y)=x2+(y1)2在椭圆方程 x 2 a 2 + y 2 b 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1 a2x2+b2y2=1的约束下取得最小值 1 1 1。于是考虑条件极值问题:
{ min ⁡ { f ( x , y ) } = 1 , x 2 a 2 + y 2 b 2 = 1. \begin{cases} \min\{f(x,y)\}=1,\\ \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1. \end{cases} min{f(x,y)}=1,a2x2+b2y2=1.
  构造拉格朗日函数 L ( x , y , λ ) = x 2 + ( y − 1 ) 2 + λ ( x 2 a 2 + y 2 b 2 − 1 ) L(x,y,\lambda)=x^2+(y-1)^2+\lambda\left(\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}-1\right) L(x,y,λ)=x2+(y1)2+λ(a2x2+b2y21),令
{ L x ′ = 2 x + 2 λ x a 2 = 0 , ( 1 ) L y ′ = 2 ( y − 1 ) + 2 λ y b 2 = 0 , ( 2 ) L λ ′ = x 2 a 2 + y 2 b 2 − 1 = 0. ( 3 ) \begin{cases} L'_x=2x+\cfrac{2\lambda x}{a^2}=0,&\qquad(1)\\ L'_y=2(y-1)+\cfrac{2\lambda y}{b^2}=0,&\qquad(2)\\ L'_\lambda=\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}-1=0.&\qquad(3) \end{cases} Lx=2x+a22λx=0,Ly=2(y1)+b22λy=0,Lλ=a2x2+b2y21=0.(1)(2)(3)
  若 x ≠ 0 x\ne0 x=0,则由可解得 λ = − a 2 \lambda=-a^2 λ=a2,再由 ( 2 ) (2) (2)可解得 y 0 = b 2 b 2 − a 2 y_0=\cfrac{b^2}{b^2-a^2} y0=b2a2b2;并由 ( 3 ) (3) (3)解得 x 0 2 = a 2 [ 1 − b 2 ( b 2 − a 2 ) 2 ] x_0^2=a^2\left[1-\cfrac{b^2}{(b^2-a^2)^2}\right] x02=a2[1(b2a2)2b2]
  由 f ( x 0 , y 0 ) = 1 f(x_0,y_0)=1 f(x0,y0)=1推出 a 2 [ 1 − b 2 ( b 2 − a 2 ) 2 ] + b 4 ( b 2 − a 2 ) 2 = 1 a^2\left[1-\cfrac{b^2}{(b^2-a^2)^2}\right]+\cfrac{b^4}{(b^2-a^2)^2}=1 a2[1(b2a2)2b2]+(b2a2)2b4=1,从而 a 2 b 2 − a 4 − b 2 = 0 a^2b^2-a^4-b^2=0 a2b2a4b2=0 b 2 − a 2 = 0 b^2-a^2=0 b2a2=0舍去)。
  为了求出 a , b a,b a,b的值,使与之对应的椭圆面积 π a b \pi ab πab达到最小值,考察条件极值问题
{ min ⁡ { a b } , a 2 b 2 − a 4 − b 2 = 0. \begin{cases} \min\{ab\},\\ a^2b^2-a^4-b^2=0. \end{cases} {min{ab},a2b2a4b2=0.
  构造拉格朗日函数 H ( a , b , η ) = a b + η ( a 2 b 2 − a 4 − b 2 ) H(a,b,\eta)=ab+\eta(a^2b^2-a^4-b^2) H(a,b,η)=ab+η(a2b2a4b2)。令
{ H a ′ = b + 2 a b 2 η − 4 a 3 η = 0 , ( 4 ) H b ′ = a + 2 a 2 b η − 2 b η = 0 , ( 5 ) H η ′ = a 2 b 2 − a 4 − b 2 , ( 6 ) \begin{cases} H'_a=b+2ab^2\eta-4a^3\eta=0,&\qquad(4)\\ H'_b=a+2a^2b\eta-2b\eta=0,&\qquad(5)\\ H'_\eta=a^2b^2-a^4-b^2,&\qquad(6)\\ \end{cases} Ha=b+2ab2η4a3η=0,Hb=a+2a2bη2bη=0,Hη=a2b2a4b2,(4)(5)(6)
  由 ( 4 ) , ( 5 ) (4),(5) (4),(5) b 4 a 3 − 2 a b 2 = a 2 b − 2 a 2 b \cfrac{b}{4a^3-2ab^2}=\cfrac{a}{2b-2a^2b} 4a32ab2b=2b2a2ba,从而 b 2 = 2 a 4 b^2=2a^4 b2=2a4。将此式代入 a 2 b 2 − a 4 − b 2 = 0 a^2b^2-a^4-b^2=0 a2b2a4b2=0,得到 2 a 6 − 3 a 4 = 0 2a^6-3a^4=0 2a63a4=0,于是 a 2 = 3 2 , a = 6 2 , b = 3 2 2 a^2=\cfrac{3}{2},a=\cfrac{\sqrt{6}}{2},b=\cfrac{3\sqrt{2}}{2} a2=23,a=26 ,b=232 ,此时椭圆面积 A 1 = π a b = 3 3 π 2 A_1=\pi ab=\cfrac{3\sqrt{3}\pi}{2} A1=πab=233 π
  若 x = 0 x=0 x=0,则由 x 2 a 2 + y 2 b 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1 a2x2+b2y2=1解得 y = b y=b y=b。将 x = 0 , y = b x=0,y=b x=0,y=b代入 x 2 + ( y − 1 ) 2 = 1 x^2+(y-1)^2=1 x2+(y1)2=1,于是 b = 2 b=2 b=2
  椭圆 x 2 a 2 + y 2 4 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{4}=1 a2x2+4y2=1 ( 0 , 2 ) (0,2) (0,2)有水平切线,并且曲率和圆 x 2 + ( y − 1 ) 2 = 1 x^2+(y-1)^2=1 x2+(y1)2=1的曲率相同,所以 y ′ ( 0 ) = 0 , y ′ ′ ( 0 ) = − 1 y'(0)=0,y''(0)=-1 y(0)=0,y(0)=1
  但是,由方程 x 2 a 2 + y 2 4 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{4}=1 a2x2+4y2=1可以计算在该点的 y ′ ( 0 ) = 0 , y ′ ′ ( 0 ) = − 2 a 2 y'(0)=0,y''(0)=-\cfrac{2}{a^2} y(0)=0,y(0)=a22,所以 2 a 2 = 1 \cfrac{2}{a^2}=1 a22=1,即 a = 2 a=\sqrt{2} a=2 。此时,椭圆的面积 A 2 = 2 2 > 3 3 π 2 = A 1 A_2=2\sqrt{2}>\cfrac{3\sqrt{3}\pi}{2}=A_1 A2=22 >233 π=A1
  综上所述,当 a = 6 2 , b = 3 2 2 a=\cfrac{\sqrt{6}}{2},b=\cfrac{3\sqrt{2}}{2} a=26 ,b=232 时,椭圆面积最小。(这道题主要利用了拉格朗日函数求解

C C C

3.设函数 f ( x , y ) f(x,y) f(x,y)及它的二阶偏导数在全平面连续,且 f ( 0 , 0 ) = 0 , ∣ ∂ f ∂ x ∣ ⩽ 2 ∣ x − y ∣ , ∣ ∂ f ∂ y ∣ ⩽ 2 ∣ x − y ∣ f(0,0)=0,\left|\cfrac{\partial f}{\partial x}\right|\leqslant2|x-y|,\left|\cfrac{\partial f}{\partial y}\right|\leqslant2|x-y| f(0,0)=0,xf2xy,yf2xy。求证: ∣ f ( 5 , 4 ) ∣ ⩽ 1 |f(5,4)|\leqslant1 f(5,4)1

  因 d [ f ( x , y ) ] = ∂ f ∂ x d x + ∂ f ∂ y d y \mathrm{d}[f(x,y)]=\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y d[f(x,y)]=xfdx+yfdy,因此曲线积分 ∫ L ∂ f ∂ x d x + ∂ f ∂ y d y \displaystyle\int_L\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y Lxfdx+yfdy与路径无关。
  设 O ( 0 , 0 ) , A ( 4 , 4 ) , B ( 5 , 4 ) O(0,0),A(4,4),B(5,4) O(0,0),A(4,4),B(5,4),由条件 ∣ ∂ f ∂ x ∣ ⩽ 2 ∣ x − y ∣ , ∣ ∂ f ∂ y ∣ ⩽ 2 ∣ x − y ∣ \left|\cfrac{\partial f}{\partial x}\right|\leqslant2|x-y|,\left|\cfrac{\partial f}{\partial y}\right|\leqslant2|x-y| xf2xy,yf2xy,知在直线 O A : y = x OA:y=x OA:y=x上, ∂ f ∂ x = ∂ f ∂ y = 0 \cfrac{\partial f}{\partial x}=\cfrac{\partial f}{\partial y}=0 xf=yf=0,所以
f ( 5 , 4 ) − f ( 0 , 0 ) = ∫ ( 0 , 0 ) ( 5 , 4 ) d [ f ( x , y ) ] = ∫ ( 0 , 0 ) ( 5 , 4 ) ∂ f ∂ x d x + ∂ f ∂ y d y = ∫ O A ‾ ∂ f ∂ x d x + ∂ f ∂ y d y + ∫ A B ‾ ∂ f ∂ x d x + ∂ f ∂ y d y = ∫ 4 5 ∂ f ( x , 4 ) ∂ x d x . \begin{aligned} f(5,4)-f(0,0)&=\displaystyle\int^{(5,4)}_{(0,0)}\mathrm{d}[f(x,y)]=\displaystyle\int^{(5,4)}_{(0,0)}\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y\\ &=\displaystyle\int_{\overline{OA}}\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y+\displaystyle\int_{\overline{AB}}\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y=\displaystyle\int^5_4\cfrac{\partial f(x,4)}{\partial x}\mathrm{d}x. \end{aligned} f(5,4)f(0,0)=(0,0)(5,4)d[f(x,y)]=(0,0)(5,4)xfdx+yfdy=OAxfdx+yfdy+ABxfdx+yfdy=45xf(x,4)dx.
  又因 f ( 0 , 0 ) = 0 f(0,0)=0 f(0,0)=0,故 ∣ f ( 5 , 4 ) ∣ = ∣ ∫ 4 5 ∂ f ( x , 4 ) ∂ x d x ∣ ⩽ ∫ 4 5 2 ∣ x − 4 ∣ d x = 1 |f(5,4)|=\left|\displaystyle\int^5_4\cfrac{\partial f(x,4)}{\partial x}\mathrm{d}x\right|\leqslant\displaystyle\int^5_42|x-4|\mathrm{d}x=1 f(5,4)=45xf(x,4)dx452x4dx=1。(这道题主要利用了第二型曲线积分求解

5.设 u ( x , y ) u(x,y) u(x,y)具有二阶连续偏导数,证明无零值的函数 u ( x , y ) u(x,y) u(x,y)可分离变量(即 u ( x , y ) = f ( x ) g ( y ) u(x,y)=f(x)g(y) u(x,y)=f(x)g(y))的充分必要条件是 u ∂ 2 u ∂ x ∂ y = ∂ u ∂ x ∂ u ∂ y u\cfrac{\partial^2u}{\partial x\partial y}=\cfrac{\partial u}{\partial x}\cfrac{\partial u}{\partial y} uxy2u=xuyu

  必要性:设 u ( x , y ) = f ( x ) g ( y ) u(x,y)=f(x)g(y) u(x,y)=f(x)g(y),则 ∂ u ∂ x = f ′ ( x ) g ( y ) , ∂ u ∂ y = f ( x ) g ′ ( y ) , ∂ 2 u ∂ x ∂ y = f ′ ( x ) g ′ ( y ) \cfrac{\partial u}{\partial x}=f'(x)g(y),\cfrac{\partial u}{\partial y}=f(x)g'(y),\cfrac{\partial^2u}{\partial x\partial y}=f'(x)g'(y) xu=f(x)g(y),yu=f(x)g(y),xy2u=f(x)g(y),因此 u ∂ 2 u ∂ x ∂ y = f ( x ) g ( y ) f ′ ( x ) g ′ ( y ) = ∂ u ∂ x ∂ u ∂ y u\cfrac{\partial^2u}{\partial x\partial y}=f(x)g(y)f'(x)g'(y)=\cfrac{\partial u}{\partial x}\cfrac{\partial u}{\partial y} uxy2u=f(x)g(y)f(x)g(y)=xuyu
  充分性:因为 ∂ 2 u ∂ x ∂ y = ∂ ∂ y ( ∂ u ∂ x ) \cfrac{\partial^2u}{\partial x\partial y}=\cfrac{\partial}{\partial y}\left(\cfrac{\partial u}{\partial x}\right) xy2u=y(xu),所以有 u ( u x ′ ) y ′ − ( u x ′ ) ( u y ′ ) = 0 u(u'_x)'_y-(u'_x)(u'_y)=0 u(ux)y(ux)(uy)=0,又 u ( x , y ) u(x,y) u(x,y)无零值,故可得 ( u x ′ u ) y ′ = 0 \left(\cfrac{u'_x}{u}\right)'_y=0 (uux)y=0,两边关于 y y y积分得 u x ′ u = c 1 ( x ) \cfrac{u'_x}{u}=c_1(x) uux=c1(x),其中 c 1 ( x ) c_1(x) c1(x) x x x的任意可微函数,即有 ( ln ⁡ ∣ u ∣ ) x ′ = c 1 ( x ) (\ln|u|)'_x=c_1(x) (lnu)x=c1(x),再对 x x x积分得 ln ⁡ ∣ u ∣ = ∫ c 1 ( x ) d x + c 2 ( y ) \ln|u|=\displaystyle\int c_1(x)\mathrm{d}x+c_2(y) lnu=c1(x)dx+c2(y),其中 c 2 ( y ) c_2(y) c2(y) y y y的任意可微函数。故 u ( x , y ) = ± e ∫ c 1 ( x ) d x e c 2 ( y ) = f ( x ) g ( y ) u(x,y)=\pm e^{\int c_1(x)\mathrm{d}x}e^{c_2(y)}=f(x)g(y) u(x,y)=±ec1(x)dxec2(y)=f(x)g(y)。(这道题主要利用了方程求导求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值