【caffe 深度学习】2.caffe文件详解

这篇博客主要是对上篇博客提到的文件作一个详解。

1.MNIST数据集

    下载下来的数据集被分成两部分:60000张图片的训练数据集和10000张图片的测试数据集。

    

    每张图片包含28*28个像素,图片里的每个像素都是8位的,也就是说每一个像素值的强度介于0-255之间。


2.下载的原始数据集为二进制文件,需要转换为LEVELDB或LMDB

    LMDB-闪电般的内存映射型数据库管理器,在caffe中的主要作用是进行数据管理,将各种类型的原始数据(比如JPEG图片,二进制数据)都统一转换为Key-Value存储,以便于Caffe的DataLayer获取这些数据,而LEVELDB是Google开发的一种数据存储方式,在Caffe早期的版本中用得比较多,现在LMDB用得更多。

    所以,LMDB的作用是统一数据类型并加快读取速度。


3.修改网络模型描述文件caffe-windows\examples\mnist\lenet_train_test.prototxt

name: "LeNet"						#网络层的名字					
layer {								#定义一个层
  name: "mnist"						#层的名字是mnist
  type: "Data"						#层的类型是"Data",表名数据来源于LMDB或LevelDB.另外其他数据来源还可能来自内存,HDF5,图片等。
  top: "data"						#输出data
  top: "label"						#输出label
  include {
    phase: TRAIN					#该层只在TRAIN训练的时候有效
  }
  transform_param {					#数据的预处理
    scale: 0.00390625				#1/256,将输入的数据0-255转换到0-1,每个数都乘以0.00390625
  }
  data_param {
    source: "E:/graduate_student/deep_learning/caffe/new_Win_caffe/document/1/caffe-windows/caffe-windows/examples/mnist/lmdb/train_lmdb"	#数据来源
    batch_size: 64					#每个批处理64张图片
    backend: LMDB					#数据格式LMDB
  }
}
layer {								
  name: "mnist"						
  type: "Data"						
  top: "data"
  top: "label"
  include {
    phase: TEST						#该层指在TEST测试的时候有效
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "E:/graduate_student/deep_learning/caffe/new_Win_caffe/document/1/caffe-windows/caffe-windows/examples/mnist/lmdb/test_lmdb"
    batch_size: 100					#每个批处理100张图片
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"				#层的类型是卷积层
  bottom: "data"					#输入data
  top: "conv1"						#输出conv1
  param {							#这个是权值的学习率
    lr_mult: 1						#学习率系数,最终的学习率是这个学习率系统lr_mult乘以solver.prototxt里面的base_lr
  }
  param {							#这个是偏执的学习率
    lr_mult: 2						#学习率系数,最终的学习率是这个学习率系统lr_mult乘以solver.prototxt里面的base_lr
  }
  convolution_param {
    num_output: 20					#卷积核的个数为20,或者表示输出特征平面的个数为20
    kernel_size: 5					#卷积核的大小5*5。如果卷积核长和宽不等,则需要用kernel_h和kernel_w分别设置
    stride: 1						#步长为1。也可以用stride_h和stride_w来设置
    weight_filler {					#权值初始化
      type: "xavier"				#使用xavier算法(正则化初始化),也可以设置为"gaussian"
    }
    bias_filler {					#偏执初始化
      type: "constant"				#一般设置为“constant",取值为0
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"					#层的类型是池化层
  bottom: "conv1"					#输入conv1
  top: "pool1"						#输出pooll
  pooling_param {
    pool: MAX						#池化方法,常用的方法有MAX,AVE或STOCHASTIC
    kernel_size: 2					#池化核的大小2*2,如果池化核长和宽不等,则需要用kernel_h和kernel_w分别设置
    stride: 2						#池化的步长,也可以用stride_h核stride_w来设置
  }
}
layer {
  name: "conv2"
  type: "Convolution"				#第2个卷积层
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 50					#卷积核的个数为50,或者表示输出特征平面的个数为50
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool2"
  type: "Pooling"					#第2个池化层
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"				#层的类型是全连接层
  bottom: "pool2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500					#500个神经元
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"						#层的类型’ReLU',激活函数,可以解决梯度消失或梯度爆炸的问题
  bottom: "ip1" 					#输入ip1
  top: "ip1"						#输出经过激活函数处理过的ip1
}
layer {
  name: "ip2"
  type: "InnerProduct"				#第2个全连接层
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10					#10个输出,代表10个分类
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "accuracy"					
  type: "Accuracy"					#层的类型是"Accuracy",用来判断准确率
  bottom: "ip2"						
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"			#层的类型是"SoftmaxWithLoss",输出误差值loss
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}
下图是激活函数:



4.修改超参数文件caffe-windows\examples\mnist\lenet_solver.prototxt

#网络模型描述文件
#也可以用train_net和test_net来对训练模型和测试模型分别设定,这里用同一个模型
net: "E:/graduate_student/deep_learning/caffe/new_Win_caffe/document/1/caffe-windows/caffe-windows/examples/mnist/lenet_train_test.prototxt"

#这个参数要跟test_layer结合起来考虑,在test_layer中一个batch是100,而总共的测试图片是10000张
#所以这个参数就是10000/100=100,我们测试100次,每次测试100张图片
test_iter: 100
# 每训练500次进行一次测试
test_interval: 500
# 学习率
base_lr: 0.01
#动力
momentum: 0.9
#type:SGD #优化算法的选择。这一行可以省略,因为默认值就是SGD,Caffe中一共有6中优化算法可以选择
#Stochastic Gradient Descent (type: "SGD"), 在Caffe中SGD其实应该是Momentum
#AdaDelta (type: "AdaDelta"),
#Adaptive Gradient (type: "AdaGrad"),
#Adam (type: "Adam"),
#Nesterov’s Accelerated Gradient (type: "Nesterov")
#RMSprop (type: "RMSProp")

#权重衰减项,其实也就是正则化项,作用是防止过拟合
weight_decay: 0.0005

# 学习率调整策略
#如果设置为inv,还需要设置一个power,返回base_lr * (1 + gamma * iter) ^ (- power),其中iter表示当前的迭代次数
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# 每训练100次屏幕上显示一次,如果设置为0则不显示
display: 100
# 最大迭代次数
max_iter: 10000
# 快照。可以把训练的model和solver的状态进行保存。每迭代5000次保存一次,如果设置为0则不保存
snapshot: 5000
snapshot_prefix: "E:/graduate_student/deep_learning/caffe/new_Win_caffe/document/1/caffe-windows/caffe-windows/examples/mnist/modle/"
# 选择运行模式
solver_mode: CPU


5.开始训练模型


6.等待模型训练好,准备要测试的图片


7.生成均值文件
图片减去均值后,再进行训练和测试,会提高速度和精度。因此,一般在各种图像识别的模型中都会有这个操作。实际上就是计算所有训练样本的平均值,计算出来后,保存为一个均值文件,在以后的测试中,就可以直接使用这个均值来相减,而不需要对测试图片重新计算。


8.准备标签


9.测试分类效果


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值